
Inductive Corrections of Action Descriptions

Marcello Balduccini

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA

marcello.balduccini@ttu.edu

Abstract. In this paper, we show how A-Prolog can be used to
perform incremental, inductive learning of the behavior of dynamic
domains from (possibly incomplete) observations. The learning module
deals with both direct and indirect effects of actions, and is not affected
by the frame problem. Moreover, the module can be combined with
planning and diagnostic modules, allowing for its integration in
autonomous agents.

1 Introduction

A-Prolog, the language of logic programs under the answer set semantics [2], has
been recently used to design sophisticated planning and diagnostic modules for a
fairly large class of domains. To the best of our knowledge, however, no attempt
was made to design an A-Prolog software component capable of inductive learning
of the behavior of dynamic domains. Our goal in this paper is to describe such
a software component. At this stage of the development, our main concerns are
assessing the feasibility of the approach, its simplicity and flexibility, as well as
the ability to integrate the module with other reasoning components.

2 The Learning Task

The learning component takes as input an action description and a history and
computes possible corrections of the action description that agree with the
history. Because of space restrictions, in this paper we write the laws directly
in the logic programming encoding used by our learning module. Hence, a
dynamic law is encoded by a set of atoms d law($), head($, l0),
action($, ae), prec($, l1),prec($, l2), . . ., prec($, ln), where $ is the name of
the law, li’s are terms denoting fluent literals (names of relevant properties and
their negations), and ae is an action. The intuitive reading is “if ae is executed
in a state in which l1, . . . , ln hold, l0 holds at the next step.” The terms are
possibly non-ground, with the restriction that every variable that occurs in li
or ae must also occur in $. A state constraint is represented by a set of atoms
s law($), head($, l0), prec($, l1), . . ., where $ and li’s are as above. The
intuitive reading is “if l1, . . . , ln hold, then l0 must hold as well (at the same
step).” Observations on fluents are statements obs(l, s) stating that fluent



literal l was observed to hold at step s; observations on actions are statements
hpd(ae, s), stating that action ae was observed to occur at step s. An action
description AD is a set of dynamic laws and state constraints1. A recorded
history up to step cT , HcT , is a set of observations on fluents and on actions
up to step cT . A domain description is a pair D = 〈AD,HcT 〉. The semantics
of D is given by the set of A-Prolog rules, Π:

% If the preconditions of a state constraint hold, its head holds.
1. h(L, T ) ← s law(W ), head(W, L), prec h(W, T ).
% If the preconditions hold and the action occurred, the head holds at the next step.
2. h(L, T + 1) ← d law(W ), head(W, L), prec h(W, T ), action(W, A), o(A, T ).
% The inertia axiom: normally, things stay as they are.

3. h(L, T + 1) ← h(L, T1), not h(L, T2).
% Observations must match the predictions.
4. ← obs(L, T ), not h(L, T ).
% Observations on the initial state and actions are taken as-is.
5. o(A, T ) ← hpd(A, T ).
6. h(L, 0) ← obs(L, 0).

where h(L, T ) (resp., o(A, T )) says that L holds at T (resp., A occurs at T ).
Relation prec h(W,T ) holds when all the preconditions of W hold at T . Rule 4
causes inconsistency if unexpected observations are detected. We say that HcT

is a symptom (for D) if AD ∪ HcT ∪ Π is inconsistent. In the context of this
work, a symptom indicates that the action description needs to be modified. A
modification for AD is a set of atoms encoding new causal laws, and of atoms
encoding additional preconditions for the laws already in AD.

Definition 1. An inductive correction of AD for symptom HcT is a modifica-
tion M for AD such that HcT ∪AD ∪M∪Π is consistent.

From the point of view of learning, rule (4) above guarantees that consistency
is achieved only when all the observations (both positive and negative) are ex-
plained, i.e. for every obs(l, s) ∈ HcT , HcT ∪ AD ∪ M ∪ Π ² h(l, s). The A-
Prolog learning module is based on a generate-and-test approach in which mod-
ifications are generated and tested to see if they are inductive corrections. In A-
Prolog modifications can be easily generated by using choice rules. For example,
given a(1), a(2), the rule 1{p(Y ) : a(Y )}1 intuitively generates two alternative
selections, {p(1)} and {p(2)}, of cardinality 1. Each selection intuitively leads to
a separate answer set, containing the selection and its consequences.2

The main issue in writing the A-Prolog learning module is that
non-ground terms have to be given a ground name. For simplicity,
we denote a term t(V1, . . . , Vn) by t[ν1,...,νn].3 The latter is called the
groundification of the former. The link between the two is encoded by relation
gr(t(V1, . . . , Vn), t[ν1,...,νn]). Relation litname(L) (resp., actname(A)) holds
for ground and groundified fluent literals (resp., actions). Relation

1 In the full paper, we also allow impossibility conditions.
2 For a mathematical definition of the semantics, please refer to [2].
3 Better naming schemes can be designed, but are out of the scope of this paper.



new lawname(W ) holds if W is the groundification of a name of a
law that does not occur in the laws of AD. We also need a way to
simulate the grounding of laws. This is useful when we are given an atom
prec($[ν1,...,νn], l[ν1,...,νm]) and want to instantiate l[ν1,...,νn] for the ground
instance $(c1, . . . , cn) of the law. To this purpose, we use relation
denotes(l[ν1,...,νm], $[ν1,...,νn], $(c1, . . . , cn), l(c1, . . . , cm)). Notice that all of the
above relations can be automatically pre-computed.

The learning module, L, consists of the following rules4:

% Generate new dynamic laws or state constraints as needed.
1. 0{missing law(W ) : new lawname(W )}∞.
2. 1{d law(W ′), s law(W ′)}1← missing law(W ), gr(W, W ′).
% Select groundified head, action, and preconditions as needed.
3. 1{needs(W, head(L)) : litname(L)}1← missing law(W ).
4. 1{needs(W, action(A)) : actname(A)}1← missing law(W ), gr(W, W ′), d law(W ′).
5. 0{needs(W, prec(N, L)) : litname(L)}1← gr(W, W ′), prec index(N).
% Map groundified terms into their groundings.
6. head(W, L)← needs(W ′, head(L′)), denotes(L′, W ′, W, L).
7. action(W, A)← needs(W ′, action(A′)), denotes(A′, W ′, W, A).
8. prec(W, N, L)← needs(W ′, prec(N, L′)), denotes(L′, W ′, W, L).

We say that the atoms needs(W,X) above define the modification that can be
extracted from their second arguments.

Theorem 1. Let D be domain description, S be a symptom, and M a modifi-
cation. An answer set, A, of HcT ∪AD ∪Π ∪L defines M, if and only if M is
an inductive correction of AD for S.

Notice that our approach deals with both direct and indirect effects of actions.
Also, because the inertia axiom is built in Π, the learning module can generate
action descriptions that do not have the frame problem [3]. As preconditions can
be added to existing laws, the process can be viewed as incremental. Extensions
of A-Prolog also allow to specify heuristics and preferences to improve the quality
of the learning process. Finally, a comparison with [1] and derived work shows
that L shares the same encoding of the existing planning and diagnostic modules.
Thus, it can be integrated in agent architectures based on the cited approach.

References

1. Chitta Baral and Michael Gelfond. Reasoning Agents In Dynamic Domains. In
Workshop on Logic-Based Artificial Intelligence, pages 257–279. Kluwer Academic
Publishers, Jun 2000.

2. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, pages 365–385, 1991.

3. Ramon Otero. Induction of the effects of actions by monotonic methods. In Pro-
ceedings of the 13th International Conference on Inductive Logic Programming, ILP
03, number 2835 in Lecture Notes in Artificial Intelligence (LNCS), pages 299–310,
2003.

4 A few rules were omitted to save space. The full paper contains the complete module.


