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Abstract. Explainable artificial intelligence (XAI) aims at addressing complex
problems by coupling solutions with reasons that justify the provided answer.
In the context of Answer Set Programming (ASP) the user may be interested in
linking the presence or absence of an atom in an answer set to the logic rules
involved in the inference of the atom. Such explanations can be given in terms
of directed acyclic graphs (DAGs). This article reports on the advancements
in the development of the XAI system xASP by revising the main foundational
notions and by introducing new ASP encodings to compute minimal assump-
tion sets, explanation sequences, and explanation DAGs. DAGs are shown to
the user in an interactive form via the xASP navigator application, also intro-
duced in this work.

Keywords: Answer Set Programming - eXplainable Artificial Intelligence - Knowl-
edge Representation and Reasoning.

1 Introduction

The interest in explainable artificial intelligence (XAI) has grown substantially in re-
cent years. The reasons for this trend are obvious: while intelligent systems capable
of solving complex problems are useful, confidence in their results is limited unless
users can query them about the reasons that lead to the solutions produced. The
right to an explanation law, extensively discussed in the USA, EU and UK, and partly
enacted in some countries, increases the need for XAl systems. In this paper, we fo-
cus on the development of an XAl system for Answer Set Programming (ASP) [19, 22].
ASP is a knowledge representation and reasoning (KR&R) approach to problem solv-
ing using logic programs under answer set semantics [15], an extension of Datalog
with a strong connection with well-founded semantics [23]. In this setting, we are
mainly interested in the question “given an answer set A of a program 11 and an atom
a, whydoesae A (orag A)?”

As a logic program I is a set of rules, the question can be answered by provid-
ing the subset of IT that supports the presence (or the absence) of @ given IT and A.
If IT is a Datalog program, then its models are easily explainable by the derivation
procedure implemented by Datalog engines. Essentially, each atom in the model is
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explained by the support provided by a rule whose body is true and contains only
already explained atoms. If IT is a logic program under the well-founded semantics,
then the fact that a belongs (or does not belong) to the well-founded model of I
can be explained similarly, with the addition of some atoms that are concluded to
be false because they belong to some unfounded set. Generally speaking, explana-
tions for logic programs under the answer set semantics can also be produced in a
similar way under the assumption provided by the answer sets themselves for the in-
terpretation of false atoms. However, taking all false atoms as an assumption would
likely result in a faint explanation, actually in an explanation by faith for all such false
atoms. Therefore, two main issues need to be tackled in explaining the assignment of
a in A: (i) how to compute a hopefully small set of assumptions capable of explaining
the assignment of a in A; and (ii) how to support sophisticated linguistic constructs
such as choice rules and aggregates, which can be involved in explaining the falsity
of some atoms in easily understandable terms.

An XAl system providing the reasons for the presence or absence of a given atom
in an answer set finds another important application in the identification of the
cause of unexpected results. This is a feature that can be particularly useful to the
designers of complex systems confronted with unexpected inferences. In fact, iden-
tifying the root causes of those inferences can be daunting due to the many pos-
sible interactions in large knowledge bases. We found ourselves faced with such a
challenge during the recent development of a commercial application. The ASP pro-
gram that powered the decision-making component comprised a number of mod-
ules that could be enabled or disabled depending on needs. During development, we
noticed that certain combinations of modules yielded unexpected results. After care-
fully checking each module, individually, for errors, we began to suspect that rules
from different modules were interacting with each other in unexpected ways. Investi-
gating those interactions proved to be a very time-consuming task that took approx-
imately 3 Full-Time Equivalent weeks and considerably slowed down the project at
a critical time. While XAI-inspired research conducted by the ASP community had
already produced a number of tools related to this problem, such as xclingo [8],
DiscASP [17], xASP [28], and s(CASP) [3], none of them could be used for our prob-
lem, due to their inability to process a program of the size of ours in an acceptable
amount of time and the lack of support for certain advanced language features, and
in some cases due to shortcomings in the type of information produced.

In this paper, we present research that takes inspiration from the approach used
in xASP [28] and extends from [2], but that aims at yielding substantially increased
scalability and breadth of supported language features, while producing information
more immediately and consistently useful to users. The ultimate goal is to produce a
system that can be applied to programs of size and complexity found in commercial-
grade applications. Our main contributions are the following:

— A notion of explanation for the presence or absence of an atom in an answer set
in terms of easy-to-understand inferences originating from a hopefully small set
of atoms assumed false (Section 3).
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— A representation of explanations in terms of directed acyclic graphs, restricted
to the atoms involved in the explanation (Section 3), and a proof of existence for
the explanations according to the given definition (Section 4).

- Theimplementation of a system for producing explanations powered by ASP and
its empirical evaluation (Sections 5-6).

- The implementation of a web application for visualizing and interacting with the
generated explanations.

— Suggestions on how to rewrite input programs in order to obtain richer explana-
tions.

The supported fragment of ASP includes uninterpreted function symbols, common
aggregation functions, comparison expressions, strong negation, constraints, nor-
mal rules, and choice rules. Aggregates are expected to be stratified, to not involve
default negation, and to have a single atomic condition. Choice rules are expected
to be unconditional, or otherwise to have exactly one conditional atom with a self-
explanatory condition (as for example a range expression or an extensional predi-
cate). Additionally, to ease the presentation, in Section 2 we only consider sum ag-
gregates, and completely omit uninterpreted function symbols, comparison expres-
sions, strong negation, and conditions in choice rules.

2 Background

All sets and sequences considered in this paper are finite. Let P, C, V be fixed nonempty
sets of predicate names, constants and variables. Predicates are associated with an ar-
ity, anon-negative integer. A termis any element in CUV. An atom is of the form p(7),
where p € P, and 7 is a possibly empty sequence of terms. A literal is an atom possi-
bly preceded by the default negation symbol not; they are referred to as positive and
negative literals.

An aggregate is of the form

sumita, t': p(D} @ ty (1

where o is a binary comparison operator, p € P, 7 and ¢’ are possibly empty se-
quences of terms, and 7, and 7 are terms.
A choiceis of the form
t <{atoms} < t, 2)

where atoms is a possibly empty sequence of atoms, and t;, f, are terms. Let L be
syntactic sugar for 1 < {} < 1.
A ruleis of the form
head — body 3)

where head is an atom or a choice, and body is a possibly empty sequence of literals
and aggregates. For a rule r, let H(r) denote the atom or choice in the head of r; let
BX(r), Bt (r) and B~ (r) denote the sets of aggregates, positive and negative literals in
the body of r; let B(r) denote the set B*(r) UB* (r) UB~(r).
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A variable X occurring in B* (r) is a global variable. Other variables occurring
among the terms t of some aggregate in BZ(r) of the form (1) are local variables.
And any other variable occurring in r is an unsafe variable. A safe rule is a rule with
no unsafe variables. A program Il is a set of safe rules. Additionally, we assume that
aggregates are stratified, that is, the dependency graph %n having a vertex for each
predicate occurring in IT and an edge pg whenever there is r € IT with p occurring in
H(r) and g occurring in B* (r) or B*(r) is acyclic.

Example 1. Given a connected undirected graph G encoded by predicate edge/2,
source and sink nodes encoded by predicates source/ 1 and sink/ 1, the following pro-
gram assigns a direction to each edge so that source nodes can still reach all sink
nodes:

1 <{arc(X,Y); arc(Y,X)} =1 — edge(X,Y) 4)
reach(X, X) — source(X) (5)
reach(X,Y) — reach(X, Z), arc(Z,Y) (6)
1 — source(X), sink(Y), not reach(X,Y) (7)

If failures on the reachability condition are permitted up to a given threshold en-
coded by predicate threshold/ 1, the program comprising rules (4)-(6) and

fail(X,Y) — source(X), sink(Y), not reach(X,Y) (8)
1 — threshold(T), sum{1,X,Y : fail(X,Y)} > T 9)

can be used. Note that X and Y are local variables in rule (9), and all other variables
are global. |

A substitution o is a partial function from variables to constants; the application
of o to an expression E is denoted by Eo. Let instantiate(I1) be the program obtained
from rules of II by substituting global variables with constants in C, in all possible
ways; note that local variables are still present in instantiate(IT). The Herbrand base
of I1, denoted base(I1), is the set of ground atoms (i.e., atoms with no variables) oc-
curring in instantiate(IT).

Example 2. Let Iy, comprise rules (4)-(6), (8)—(9) and the facts (i.e., rules with an
empty body) edge(a, b), edge(a, d), edge(d, c), source(a), source(b), sink(c), and
threshold(0) (see Figure 1).

b o (@) ®

Fig. 1: The undirected graph used as running example. Source vertices in blue, sink
vertex in red. The goal is to assign directions to edges so that all source nodes still
reach all sink nodes.

Hence, instantiate(Il,,;) contains, among others, the rules

1 < {arc(a, b); arc(b,a)} <1 — edge(a, b)
1 — threshold(0), sum{l,X,Y : fail(X,Y)} >0

and base(I1,,,) contains fail(a, c), fail(b, c¢), and so on. [ |
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A (two-valued) interpretation is a set of ground atoms. For a two-valued inter-
pretation I, relation [ |= - is defined as follows: for a ground atom p(c), I = p(c) if
p(c©) € I, and I |= not p(c) if p(c) ¢ I; for an aggregate a of the form (1), the aggregate
set of a w.r.t. I, denoted aggset(a, I), is {ta, 10 | p(f)o € I, for some substitution g},
and I = aif (X (cayeaggsetta,n) €a) @ lg 18 @ true expression over integers; for a choice
a of the form (2), I |= a if ; < |I natoms| < 1, is a true expression over integers; for a
rule r with no global variables, I = B(r)if I = a foralla € B(r),and I |=r if I |= H(r)
whenever I |= B(r); for a program I1, I |=ITif I |= r for all r € instantiate(IT).

For a rule r of the form (3) and an interpretation I, let expand(r, I) be the set
{p(c) — body | p(c) € I occurs in H(r)}. The reduct of I1 w.r.t. I is the program com-
prising the expanded rules of instantiate(I1) whose body is true w.r.t. I, that is, reduct
(IT, ) := Ureinstantiate(Pi), 1=B(r) expand(r, I). An answer set of I1 is an interpretation A
such that A |=IT and no I c A satisfies I |= reduct(Il, A).

Example 3. The only answer set A, of program II,,, contains, among others, the
atoms arc(b, a), arc(a,d), arc(d, c), no other instance of arc/2, and no instance of
faill 2 (see Figure 2). Hence, Ay, |= 1 < {arc(a, b); arc(b, a)} < 1 and

Apyn Esum{l, X, Y : fail(X,Y)} > 0.

b O (@ @®

Fig. 2: The directed graph solution of the running example. All source nodes (in blue)
reach all sink nodes (in red).

A three-valued interpretation is a pair (L, U), where L, U are sets of ground atoms
such that L € U; also let (L, U); denote the lower bound L of (L, U) and (L, U), de-
note the upper bounds U of (L, U), so atoms in L are true, atoms in U \ L are unde-
fined, and all other atoms are false. The evaluation function [[']]g associates literals
and aggregates with a truth value among u, t and f as follows: [[a]l; = uif « is a lit-
eral whose atom is p(c) and p(c) € U\ L, or a is an aggregate of the form (1) and
aggset(a,U\ L) # @, or a is a choice of the form (2) and (U \ L) N atoms # @; [[a]]g =t
if [[a]]g #uand L = a; and [[a]]g =fif [[oc]]g #uand L [# a. The evaluation function
extends to rule bodies as follows: [[B(r)]]g =fif there is a € B(r) such that [[af]]g =f;
(B =tif [a]]Y = tfor all a € B(r); otherwise [[B(r)]{ =u.

Example 4. For a being sumi{1,X,Y : fail(X,Y)} > 0, [[a]] g“ﬂ(“'c)} =u, [a]] g%zgi =t,

and [[a]]§ =1. u

Mainstream ASP systems compute answer sets of a given program I1 by applying
several inference rules on (a subset of) instantiate(Il), the most relevant ones for this
work summarized below. Let (L, U) be a three-valued interpretation, and p(c) be a
ground atom such that [[p(a]]LU =u. Atom p(c) in H(r) is inferred true by support
if [[B(r)]]LU =t. (Actually, if H(r) is a choice of the form (2), inference by support ad-
ditionally requires that |atomsn U| = t;, that is, undefined atoms in atomsn U are
required to reach the bound f;. Such extra condition is not relevant for our work,
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and will not be used, because our explanations aim at associating true atoms with
rules with true bodies.) Atom p(c) is inferred false by lack of support if each rule
r € instantiate(I1) with p(c) occurring in H(r) is such that [[B(r)]]g =f. Atom p(c) is
inferred false by a constraint-like rule r € instantiate(Tl) if p(c) € B* (r), [[H(r)]]g =f
and [[B(r) \ { p(E)}]]g =t. Atom p(c) is inferred false by a choice rule r € instantiate(II)
if H(r) has the form (2), p(c) € atoms, |atomsn L| = t, and [[B(r)]]g =t. Atom p(c) is
inferred false by well-founded computation if it belongs to some unfounded set X for
ITw.r.t. (L, U), that is, a set X such that for all rules r € instantiate(Il) at least one of
the following conditions holds: (i) no atom from X occurs in H(r); (ii) [[B(r)]]g =f
(iii) BY (N n X # @.

Example 5. Given the program instantiate(Il,,,), and the three-valued interpreta-
tion (@, base(I1,,,)), atom edge(a, a) is inferred false by lack of support, atom source(a)
is inferred true by support, and the set {edge(a, a), arc(a, a)} is unfounded. Given
({arc(d, )}, base(I1,,) \ {reach(a, c)}), atom reach(a, d) is inferred false by the constraint-
like rule (6), and arc(c, d) is inferred false by the choice rule (4). [ |

3 Explanations

Let IT be a program, and A be one of its answer sets. A well-founded derivation for I1
w.r.t. A, denoted wf(Il, A), is obtained from the interpretation (@, base(Il)) by itera-
tively (i) adding to its lower bound atoms of A that are inferred true by support, and
(ii) removing from its upper bound atoms belonging to some unfounded set. Note
that wf (I1, A) is computed as a preprocessing step.

Example 6. Given I1,,, and A, from Examples 2-3, the lower bound of wf (I1,,,

Aryn) contains head atoms in Example 2, arc(b, a), arc(a,d), arc(d,c), reach(a, a),
reach(b, b), reach(a,d), reach(a,c), reach(b, a), reach(b,c), and reach(b,d). Indeed,
according to our definition of well-founded derivation for IT w.r.t. A, if the body of
arule is inferred true, then all head atoms belonging to A are inferred true because
they are supported in reduct(Il, A). The upper bound additionally contains arc(a, b),
arc(d, a), arc(c,d), and several instances of reach/2 and fail/ 2. |

An explaining derivation for II and A from (L, U) is obtained by iteratively (i)
adding to L atoms of A that are inferred true by support, and (ii) removing from
U atoms that are inferred false by lack of support, constraint-like rules and choice
rules. An assumption set for IT and A is a set X < base(IT) \ A of ground atoms such
that the explaining derivation for IT and A from (@, wf(I1, A)> \ X) terminates with A
(in words, A is reconstructed from the false atoms of the well-founded derivation ex-
tended with X). Let AS(I1, A) be the set of assumption sets for IT and A. A minimal
assumption set for I1, A and a ground atom « is a set X € AS(II, A) such that X' < X
implies X’ ¢ AS(I1, A), and « € X implies a € X’ for all X' € AS(I1, A). (In other words,
we prefer assumption sets not including the atom to explain. When all assumption
sets include the atom to explain, we opt for the singleton comprising the atom to
explain alone.) Let MAS(I], A, &) be the set of minimal assumption sets for I, A and
a.
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Example 7. Set base(I1;,,)\ Arun is an assumption set for I, and its answer set Ay,.
It can be checked that also @ € AS(I1y, Arun, @), and it is indeed the only minimal
assumption set in this case, for any atom in base(I1,,,,). [ |

Given an assumption set X and an explaining derivation from (@, wf (I1, A)2 \ X),
a directed acyclic graph (DAG) can be obtained as follows: The vertices of the graph
are the atoms in base(II) and the aggregates occurring in instantiate(I). (The vertex
p(c) is also referred to as not p(c).) Any aggregate of the form (1) is linked to instances
of p(f‘). Atoms inferred true by support due to a rule r € instantiate(I1) are linked to
elements of B(r). Any atom « inferred false by lack of support is linked to an element
of B(r) that is inferred false before a, for each rule r € instantiate(IT) such that a
occurs in H(r). Any atom « inferred false by a constraint-like rule r € instantiate(Il)
is linked to the atoms occurring in H(r) and the elements of B(r) \ {a}. Any atom «
inferred false by a choice rule r € instantiate(Il) is linked to the atoms occurring in
H(r) that are true in A, and to the elements of B(r). A portion of an example DAG is
reported in Figure 3.

arc(b,a)
explained by support

arc(a,b)
explained by choice rule

Fig. 3: Induced DAG on the vertices reachable from arc(a, b) for the minimal assump-
tion set @ for IT,,;,.

4 Existence of Minimal Assumption Sets

This section is devoted to formally show that the existence of minimal assumption
sets is guaranteed, and so are DAGs as defined in the previous section.

Theorem 1 (Main Theorem). Let IT be a program, A one of its answer sets, and a a
ground atom in base(I1). Set MAS(I1, A, @) is nonempty.

To prove the above theorem, we introduce some additional notation and claims.
Let IT be a program, and (L, U) be a three-valued interpretation. We denote by I1, L, U
F a the fact that a € base(Il) is inferred true by support, which is the case when
[[a]]g =u, and there is r € instantiate(IT) such that a occurs in H(r) and [[B(r)]]LU =t,
as defined in Section 2. Similarly, we denote by II,L,U + not « the fact that a €
base(Il) is inferred false by lack of support, constraint-like rules and choice rules,
which is the case when [[a]]g = u, and one of the following conditions holds: each
rule r € instantiate(I1) with a occurring in H(r) is such that [[B(r)]]g = f; there is
r € instantiate(TT) with & € B*(r), [H(")Y = f and [B(r)\{a}]]Y = t; there is 1 €
instantiate(IT) with H(r) of the form (2), a € atoms, |atomsn L| = t, and [[B(r)]]g =t.
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The explaining derivation operator Dr is defined as
Dn(L,U) .= (Lu{a € baseID) |II,L,U + a},U \ {a € base(Il) | 11, L, U + not a}).

Let (L,U) £ (L',U’) denote the fact that L< L' < U’ < U, i.e., everything that is true
w.r.t. (L, U) is true w.r.t. (L', U’), and everything that is false w.r.t. (L, U) is false w.r.t.
w,u.

Lemma 1. Operator Dy is monotonic w.r.t. £.

Proof. For (L,U) £ (L',U"), we shall show that Dy (L, U) € Dr (L', U’) holds. For a €
Dpn(L,U);\ Lsuchthat a ¢ L', we have I1, L, U |- a, that is, there is r € instantiate(IT)
such that @ occurs in H(r) and [[B(r)]]g =t.As(L,U) c (I',U"), we have that [[B(r)]]g,’
=t, thatis, I, L, U’ I a holds, and therefore a € D (L', U"); \ L.

For a € U\ Dy (L, U), such that @ € U’, we have I, L, U + not a, and therefore we
have three cases:

1. Eachrule r € instantiate(IT) with @ occurring in H(r) is such that [[B(r)]]g =f As
(L,U) = (L', U, [B(M1Y =fholds.

2. There is r € instantiate(TT) with a € B*(r), [H(")1Y =fand [B(r) \{a}lY = t. As
(L, U) e (L, U", (HONY =fand (B \{ahV =t.

3. There is r € instantiate(IT) with H(r) of the form (2), a € atoms, |atomsnL| = t

and [B(NY =t.As (L, U) c (L', U"), |latomsn L'| = t, and [[B()]Y =t.

In any case, I, L', U’ - a holds, and therefore a € U’ \ Dy(L', U'),. O
Lemma2. Lc Ac U implies Drj(L,U); € A< Dp(L,U)s,.

Proof. For a € D(L,U); \ L we have I, L, U + a, that is, there is r € instantiate(Il)
such that [[B(r)]]g =t. Hence, A |= B(r), and therefore expand(r, A) < reduct(I1, A). In
particular, @ — B(r) belongs to the reduct, and therefore a € A.

For a € U\ Dp(L,U), we have I, L, U + not a« and we have to show that a ¢ A.
Three cases:

1. Each rule r € instantiate(Il) with a occurring in H(r) is such that [[B(r)]]g =f.

2. There s r € instantiate(TT) with a € B* (r), [H(N]Y =fand [B(") \{a}]¥ =t.

3. There is r € instantiate(I1) with H(r) of the form (2), a € atoms, |atomsnNL| = t,
and [B(N)Y =t.

In the first case, A\ {a} |= reduct(Il, A), and therefore A\ {a} = A because A is an
answer set of I1. In the other two cases, @ ¢ A because A |= I by assumption. O

The explaining derivation from (L, U) is obtained as the fix point of the sequence
(Lo, Up) := (L, U), (Li+1,Ui+1) := Dn(L;, U;) for i = 0. Note that the fix point is reached
in at most | base(IT)| steps because of Lemma 1 and each application of Dy reduces
the undefined atoms (or is a fix point). Thus, the system eventually terminates in at
most |base(I1)| steps.

Lemma 3. For any answer set A of 11, set base(IT) \ A is an assumption set for Il and A.
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Proof. Let (L, U) be the explaining derivation from (@, base(IT) \ A). Thanks to Lemma
2, it is sufficient to show that p(c) € A implies p(c) € L. Due to the assumption of
stratified aggregates, let us consider a topological ordering Cy,...,C, (n = 1) for the
strongly connected components of ¢y, and let p € C;. We use induction on i. Since
p(c) € A, there must be r € reduct(I1, A) such that H(r) = p(c) and A |= B(r). Hence,
(B~ (N11Y = t. Moreover, [[B*(r)]Y =t, either because i = 1 and B*(r) = @, or be-
cause of the induction hypothesis. Therefore, to have a ¢ L, it must be the case that
[B* (r)]]g # tfor all such rules, but in this case L |= reduct(I1, A), a contradiction with
the assumption that A is an answer set of I1. (]

Given Lemma 3, the proof of Main Theorem is immediate by the definition of
MAS(], A, a) as following:

Proof (Proof of Main Theorem.). By definition, a minimal assumption set for I1, A
and « is a set X € AS(I1, A) such that X’ ¢ X implies X’ ¢ AS(II, A), and a € X implies
a € X' for all X' € AS(I1, A). Lemma 3 guarantees the existence of an assumption
set for IT and A. Existence of a minimal assumption set for I1, A and «a is therefore
guaranteed. U

5 Generation via Meta-Programming

By leveraging ASP systems, the concepts introduced in Section 3 can be computed.
A meta-programming approach is presented in this section, where the full language
of ASP is used, including constructs omitted in the previous sections, like weak con-
straints, uninterpreted functions, conditional literals and @-terms. The reader is re-
ferred to [11] for details. We will use the name ASP programs for encodings using the
full language of ASP, in contrast to the name program that we use for encodings using
the restricted syntax introduced in Section 2.

Program I1, answer set A and the atom to explain are encoded by a set of facts ob-
tained by computing the unique answer set of the ASP program serialize(Il, A, ), de-
fined next. Each atom p(c) in base(I1) is encoded by a fact atom(p(c)) ; moreover, the
encoding includes a fact true (p(c)) if p(c) € A, and false(p(c)) otherwise; addi-
tionally, if p(c) is false in wf (I1, A), the encoding includes a fact explained_by (p(c),
initial_well_founded).As for a, the encoding includes a fact explain(a). Each
rule r of instantiate(Il) is encoded by

rule(id(X)) :- atom(p1(f1)), ..., atom(p,(%,)).

where id is an identifier for r, X are the global variables of r, and B* (r) = {p; (§;) | i =
1,..., n}; moreover, the encoding includes

head (id(X), p() :- rule (id(X)) .

pos_body (id(X), p’(?)) .- rule(id(X)) .

neg_body (id(X),p" (t")) :- rule(id(X)).
for each p(7) occurring in H(r), p'(t') € B*(r) and p"(¢") € B~ (r); additionally, for

each aggregate a of the form (1) in B*(r), an identifier agg for a is introduced, and
the encoding includes
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pos_body (id(X) ,agg(X)) :- rule(id(X)).

aggregate (agg(X)) :- rule(id(X)).

true(agg(X)) :- rule(id(X)), #sum{t,t : true(p(f)}ot,.
false(agg(X)) :- rule(id(X)), not true(agg(X)).

rule(agg(X)) :- aggregate (agg(X)) ,true(agg(X)) .
head (agg(X),agg(X)) :- rule(agg(X)).

pos_body (agg(X), p(0) : - rule(agg(X)),true(p(?).
neg_body (agg(X), p(1) : -rule(agg(X)) ,false(p(1) .

rule((agg(X),p(®)) :- aggregate(agg(X)), false(agg(X)), atom(p(r)).
head((agg(X), p(1) ,agg(X)) : - rule((agg(X),p(D)).

pos_body ((agg(X),p(0),p) :- rule((agg(X),p(r)), false(p(r).
neg_body ((agg(X), p(0) ,p(©)) :- rule((ageg(X),p(®)), true(p(?)).

finally, if H(r) is a choice of the form (2), the encoding includes
choice (id(X), h,tk) :- rule (d(X)) .

Note that a true ground aggregate of the form (1) identified by agg(c) is associated
with a single rule whose body becomes true after all instances of p(7) are assigned
the truth value they have in the answer set A; on the other hand, a false aggregate is
associated with one rule for each instance of p(7), whose bodies becomes false when
instances of p(7) are assigned the truth value they have in the answer set A.

Example 8. Recall Il and A,,, from Examples 2-3. The ASP program
serialize(I1,,,, A, arc(a, b)) includes

atom(edge(a,b)). atom(arc(b,a)). atom (arc(a,b)).
explain(arc(a,b)).
true(edge(a,b)). true(arc(b,a)). false(arc(a,b)).

rule(r4(X,Y)) :- atom(edge(X,Y)).
choice(r4a(X,Y),1,1) :- rule(x4(X,Y)).
head(r4(X,Y), arc(X,Y)) :- rule(r4(X,Y)).
head(r4(X,Y), arc(Y,X)) :- rule(r4(X,Y)).
pos_body (r4(X,Y), edge(X,Y)):- rule(rd(X,Y)).

aggregate(aggl(T)) :- rule(r9(T)).
true(aggl(T)) :- rule(r9(T)), #sum{1,X,Y : true(fail(X,Y¥))} > T.

and several other rules. The answer set of serialize(I1,,,, A, arc(a, b)) includes, among
other atoms, aggregate (aggl (0)) and false(aggl(0)). [ |

The ASP program IIj4s reported in Figure 4, coupled with a fact for each atom in
the answer set of serialize(I1, A, a), has optimal answer sets corresponding to cardinality-
minimal elements in MAS(II, A, ). Intuitively, line 1 guesses the assumption set,



10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

The XAI System for Answer Set Programming xASP2

11

{assume_false(Atom)} :- false(Atom), not aggregate(Atom).
:~ false(Atom), assume_false(Atom), not explain(Atom). [1@1, Atom]
:~ false(Atom), assume_false(Atom), explain(Atom). [102, Atom]

has_explanation(Atom) :- explained_by(Atom,_).
:- atom(X), #count{Reason: explained_by(Atom,Reason)} != 1.

explained_by(Atom, assumption) :- assume_false(Atom).

{explained_by(Atom, (support, Rule))} :- head(Rule,Atom), true(Atom);
true (BAtom) : pos_body(Rule,BAtom); has_explanation(BAtom)
pos_body (Rule,BAtom) ;
false(BAtom) : neg_body(Rule,BAtom); has_explanation(BAtom)
neg_body(Rule,BAtom) .

{explained_by(Atom, lack_of_support)} :- false(Atom); false_body(Rule)
head(Rule,Atom) .

false_body(Rule) :- rule(Rule); pos_body(Rule,BAtom), false(BAtom),
has_explanation(BAtom) .

false_body(Rule) :- rule(Rule); neg_body(Rule,BAtom), true(BAtom),
has_explanation(BAtom) .

{explained_by(Atom, (required_to_falsify_body, Rule))} :- false(Atom),
not aggregate(Atom);
pos_body(Rule,Atom), false_head(Rule); true(BAtom)
pos_body(Rule,BAtom), BAtom != Atom;
has_explanation(BAtom) : pos_body(Rule,BAtom), BAtom != Atom;
false(BAtom) : neg_body(Rule,BAtom); has_explanation(BAtom)
neg_body(Rule,BAtom) .
explained_head(Rule) :- rule(Rule); has_explanation(HAtom)
head (Rule,HAtom) .
false_head(Rule) :- explained_head(Rule), not choice(Rule,_,_);
false(HAtom) : head(Rule,HAtom).
false_head(Rule) :- explained_head(Rule), choice(Rule, LowerBound,
UpperBound) ;
not LowerBound <= #count{HAtom' : head(Rule,HAtom'), true(HAtom')}
<= UpperBound.

{explained_by(Atom, (choice_rule, Rule))} :- false(Atom);

head(Rule,Atom), choice(Rule, LowerBound, UpperBound) ;

true (BAtom) : pos_body(Rule,BAtom); has_explanation(BAtom)
pos_body (Rule,BAtom) ;

false(BAtom) : neg_body(Rule,BAtom); has_explanation(BAtom)
neg_body(Rule,BAtom) ;

#count{HAtom : head(Rule, HAtom), true(HAtom),
has_explanation(HAtom)} = UpperBound.

Fig. 4: ASP program IIj4s for computing a minimal assumption set
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link(Atom, BAtom) :- explained_by(_, Atom, (support, Rule));
pos_body(Rule, BAtom).

link(Atom, BAtom) :- explained_by(_, Atom, (support, Rule));
neg_body(Rule, BAtom).

{link(Atom, A) : pos_body(Rule,A), false(A), explained_by(I,A,_ ), I <
Index;
link(Atom, A) : neg_body(Rule,A), true (A), explained_by(I,A, ), I <
Index} = 1 :-
explained_by(_, Atom, lack_of_support); head(Rule, Atom).

link(Atom,A) :- explained_by(_, Atom, (required_to_falsify_body, Rule));
head (Rule,A).

link(At,A) :- explained_by(_,At, (required_to_falsify_body, Rule));
pos_body(Rule,A), Al=At.

link(Atom,A) :- explained_by(_,Atom, (required_to_falsify_body, Rule));
neg_body(Rule,A) .

link(Atom, HAtom) :- explained_by(_,Atom, (choice_rule, Rule));
head(Rule,HAtom), true(HAtom).

link(Atom, BAtom) :- explained_by(_, Atom, (choice_rule, Rule));
pos_body(Rule, BAtom).

link(Atom, BAtom) :- explained_by(_, Atom, (choice_rule, Rule));
neg_body(Rule, BAtom).

Fig. 5: ASP program IIp,c for computing a directed acyclic graph associated with an
explaining derivation

line 2-3 minimizes the size of the assumption set (preferring to not assume the fal-
sity of the atom to explain), and lines 4-5 impose that each atom must have exactly
one explanation. The other rules encode the explaining derivation for IT and A from
wf (I, A) \ X, where X is the guessed assumption set.

Given a minimal assumption set encoded by predicate assume_false/1, an ex-
plaining derivation can be computed by removing lines 1-3 from the ASP program
[Tpzas. Let gxp be such an ASP program. Finally, given an explaining derivation en-
coded by explained_by(Index,Atom,Reason), with the additional Index argu-
ment encoding the order in the sequence, a DAG linking atoms according to the
derivation can be computed by the ASP program I1pag reported in Figure 5.

Example 9. LetIlg have a fact for each atom in the answer set of serialize(I1,,,,, Arun,
arc(a, b)). IpasUTls generates the empty assumption set. [1gxpUIlgU @ generates an
explaining derivation, for example one including explained_by(edge(a, b), (support,

r6)), explained_by(arc(b, a), (support,r1(a,b))) and explained_by(arc(a, b), (choice_

rule,rl(a,b))). Let Ilg have a fact for each instance of explained_by/3 in the ex-
plaining derivation. IIpsg U I1s U I1g generates a DAG, for example one including
link(arc(b, a), edge(a, b)), link(arc(a, b), arc(b, a)) and link(arc(a, b), edge(a,b)). 1
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6 Implementation and Experiment

We deployed an XAI system for ASP named xASP2 , which is powered by the clingo
python api [16]. By taking an ASP program I1, one of its answer sets A, and an atom «
as input, xASP2 is capable of producing minimal assumption sets, explaining deriva-
tions, and DAGs as output to assist the user in determining the assignment of a. The
source code is available at https://github.com/alviano/xasp and an example
DAG is given at https://xasp-navigator.netlify.app/.

The pipeline implemented by xASP2 starts with the serialization of the input
data, which is obtained by means of an ASP program crafted from the abstract syn-
tax tree of I and whose answer set identifies the relevant portion of instantiate(Il)
and base(I1). In a nutshell, ground atoms provided by the user, Au {a}, are part of
base(I1) and used to instantiate rules of IT (by matching positive body literals), which
in turn may extend base(IT) with other ground atoms occurring in the instantiated
rules; possibly, some atoms of base(Il) of particular interest can be explicitly pro-
vided by the user. Aggregates are also processed automatically by means of an ASP
program, and so is the computation of false atoms in the well-founded derivation
wf (1, A).

Obtained serialize(I1, A, @), xASP2 proceeds essentially as described in Section 5,
by computing a minimal assumption set, an explaining derivation and an explana-
tion DAG. As an additional optimization, the explaining derivation is shrunk to the
atoms reachable from a, utilizing an ASP program. Finally, the user can opt for a few
additional steps: obtain a graphical representation by means of the igraph network
analysis package (https://igraph.org/); obtain an interactive representation in
https://xasp-navigator.netlify.app/; ask for different minimal assumption
sets, explaining derivations and DAGs.

We assessed xASP2 empirically on the commercial application that we men-
tioned in the introduction. The ASP program of the commercial application can be
found in the Github repository. The ASP program comprises 420 rules and 651 facts.
After grounding, there are 4261 ground rules and 4468 ground atoms. The program
was expected to have a unique answer set, but two answer sets were actually com-
puted. Our experiment was run on an Intel Core i7-1165G7 @2.80 GHz and 16 GB of
RAM. xASP2 computed a DAG for the unexpected true atom, behaves_inertially
(testing_posTestNeg,121), in 14.85 seconds on average, over 10 executions. The
DAG comprises 87 links, 45 internal nodes and 20 leaves, only one of which is ex-
plained by assumption; only 30 of the 420 symbolic rules and 11 of the 651 facts are
involved in the DAG; at the ground level, only 48 of the 4261 ground rules and 65
of the 4468 ground atoms are involved. Additionally, we repeated the experiment on
10 randomly selected atoms with respect to two different answer sets, repeating each
test case 10 times. We measured an average runtime of 14.79 seconds, with a variance
0f 0.004 seconds.

As a second experiment, we considered the Latin Square instances reported in
Figure 6, whose encodings are shown in Figures 7-8, and queries for each part of the
computed solution, for a total of 97 queries. We recall that a Latin Square is a NxN
grid with values from the integer interval 1..N and no repeated entries in any row or
column. Tests were run on an AMD EPYC 7313 3GHz with 2TB of RAM, allowing 600
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Fig. 6: Latin Square instances used in our experiment. Given clues in black. Com-
puted solution in blue.

given((1,1), 3). given((2,4), 2). given((3,1), 1). given((4,4), 1).

assign((Row, Col), Value) :- Row = 1..4; Col = 1..4; Value = 1..4;
not assign'((Row, Col), Value).

assign' ((Row, Col), Value) :- Row = 1..4; Col = 1..4; Value = 1..4;

not assign((Row, Col), Value).

assign(Cell, Value), assign(Cell, Value'), Value < Value'.

Row = 1..4; Col = 1..4; Cell = (Row, Col); assign'(Cell, 1);

assign'(Cell, 2); assign'(Cell, 3); assign'(Cell, 4).

:- given(Cell, Value), assign'(Cell, Value).

block(Block, Cell); block(Block, Cell'), Cell != Cell';
assign(Cell, Value), assign(Cell', Value).
at_least_one(Block, Value) :- block(Block, Cell); assign(Cell, Value).
at_least_one' (Block, Value) :- block(Block, Cell); Value = 1..4;

not at_least_one(Block, Value).
:- block(Block, Cell); Value = 1..4; at_least_one'(Block, Value).

block((row, Row), (Row, Col)) :- Row = 1..4, Col = 1..4.
block((col, Col), (Row, Col)) :- Row 1..4, Col 1..4.

1]
1

Fig. 7: ASP encoding associated with the 4x4 instance of Latin Square shown in Fig-
ure 6.
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given((1, 1), 6). given((1, 3), 9). given((1, 4), 8). given((1, 6), 7).

given((2, 4), 6). given((2, 9), 1).

given((3, 2), 3). given((3, 3), 5). given((3, 6), 2). given((3, 8), 7).

given((4, 2), 6). given((4, 3), 8). given((4, 7), 1). given((4, 9), 2).

given((5, 1), 3). given((5, 6), 5).

given((6, 4), 2). given((6, 7), 3). given((6, 8), 6).

given((7, 1), 8). given((7, 2), 5). given((7, 3), 4). given((7, 4), 7).
given((7, 5), 2). given((7, 7), 6). given((7, 8), 9).

given((8, 4), 5). given((8, 5), 9). given((8, 9), 8).

given((9, 1), 2). given((9, 3), 6). given((9, 4), 4). given((9, 5), 3).
given((9, 7), 7). given((9, 8), 1). given((9, 9), 5).

assign((Row, Col), Value) :- Row = 1..9; Col = 1..9; Value = 1..9;

not assign' ((Row, Col), Value).
assign' ((Row, Col), Value) :- Row = 1..9; Col = 1..9; Value = 1..9;
not assign((Row, Col), Value).
assign(Cell, Value), assign(Cell, Value'), Value < Value'.
Row = 1..9; Col = 1..9; Cell = (Row, Col); assign'(Cell, 1);
assign'(Cell,2); assign'(Cell,3); assign'(Cell,4); assign'(Cell,5);
assign'(Cell,6); assign'(Cell,7); assign'(Cell,8); assign'(Cell,9).
:- given(Cell, Value), assign'(Cell, Value).

block(Block, Cell); block(Block, Cell'), Cell != Cell';
assign(Cell, Value), assign(Cell', Value).
at_least_one(Block, Value) :- block(Block, Cell); assign(Cell, Value).
at_least_one' (Block, Value) :- block(Block, Cell); Value = 1..9;

not at_least_one(Block, Value).
:- block(Block, Cell); Value = 1..9; at_least_one'(Block, Value).

block((row, Row), (Row, Col)) :- Row =
block((col, Col), (Row, Col)) :- Row

.9, Col = 1..9.
.9, Col =1..9.

1.
1.

Fig. 8: ASP encoding associated with the 9x9 instance of Latin Square shown in Fig-
ure 6.

seconds and 16GB. The 16 queries associated with the 4x4 instance are answered in
around 1.38 seconds on average, using around 68MB of RAM. The produced expla-
nation graphs have around 77 links on average, and use an assumption set of size
1. The 81 queries associated with the 9x9 instance are answered in around 38 sec-
onds on average, using around 438MB of RAM. The produced explanation graphs
have around 527 links on average, and use an assumption set of size 2. Details are re-
ported online (https://asp-chef.alviano.net/s/xasp/j1c2024) together with
links to the produced explanation graphs.

xASP2 also has the ability to handle explainable planning, meaning it can gen-
erate an explanation graph showing why a particular action cannot take place at a
certain time. To demonstrate this capability, we will use a popular problem known
as Blocksworld. The initial state (left) and goal state (right) of the problem are shown
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Table 1: The action preconditions and effects in Blocksworld problem

Action Precondition Effects
stack(X,Y) Block Y is clear X is clear
- stack block X is The agent holds the block X XisonY
on block Y Y is no longer clear
The agent does not hold any-
thing
unstack(X,Y) X is clear The agent holds the block X
- unstack block X XisonY Y becomes clear
is on block Y The agent does not hold any- X is not clear
thing
pickup(X) X is clear The agent holds the block X
- pickup block X X is on the table X is no longer on the table and is
from the table the agent does not hold anything not clear
putdown(X) The agent holds the block X X is clear
- put down block X is on the table
X onto the table the agent does not hold anything
a b
b a
Initial state Goal state

Fig. 9: The initial and goal states of Blocksworld.

in Figure 9. Five fluents are on(X, Y) - block X is on block Y, onTable(X) - block X
is on the table, clear(X) - block X is clear, holding(X) - the agent holds the block
X, and handEmpty - the agent does not hold anything. Four different actions are
stack, unstack, pickup and putdown. The domain description of the problem is
shown in Table 1 in which the predictions and effects of four actions are presented.

h(X,T+1) :- action(action(A)),occurs(A,T), postcondition(action(A),
effect (unconditional) ,X,value(X,true)).
-h(X,T+1) :- action(action(A)),occurs(A,T), postcondition(action(A),

effect (unconditional) ,X,value(X,false)).
h(X,T+1) :- h(X,T), not -h(X,T+1).

-h(X,T+1) :- -h(X,T), not h(X,T+1).

non_exec(A,T) :- action(action(A)), not h(X,T),
precondition(action(A),X,value(X, true)).

non_exec(A,T) :- action(action(A)), not -h(X,T),

precondition(action(A),X,value(X, false)).
:- action(action(A)),occurs(A,T), non_exec(A,T).

Fig. 10: ASP program for reasoning about effects of actions [21]
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The rules for reasoning about effects of actions, action generation and goal en-
forcement [21] are utilized as programming input in xASP2 . Figure 10 shows the ASP
program for reasoning about the effects of actions in which an action occurs only
when its preconditions are true and then its effects are true in the next time step.
Specifically, lines 5 and 6 are used to define states in which an action cannot be exe-
cuted, and constraint is employed to prevent non-executable actions from occurring
(line 7).

For the problem described in Figure 9, executing the actions of unstack(a, b),
putdown(a), pickup(b) and stack(b, a) at times 0, 1, 2, and 3 respectively consti-
tutes the optimal plan (assuming time starts at 0). However, if users are in a rush
and want to put down block a on the table at time 0, as represented by the atom
occurs(("putdown",constant("a")),0), they will encounter a false occurrence of
the action putdown(a). Figure 11 shows thatatom occurs(("putdown",constant(
"a")),0) is false because the constraint rule prevents its execution and the prediction
of the action holding block a is invalid/false.

occurs(("putdown”, constant("a")),0)
explained by required to falsify body

non_exec(("putdown",constant("a")),0)
explained by support

h(variable((" ant("a"))),0)
explain ounded

precondition{action({"putdown",constant("a"))),variable(("folding",consthnt(*a")}),value(variable( ("holding",constant("a"))}, true)}
edplained by suppprt

action(action(("putdown®, constant("a"))))
explained by support

has(const, "block"})

Fig. 11: The DAG for atom occurs(("putdown",constant("a")),0).

6.1 xASP Navigator

In order to ease the understanding of the DAG produced by xASP2, we designed
and implemented a web application called xASP navigator (https://gitlab.com/
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1{

2 "$schema": "https://json-schema.org/draft/2020-12/schema",
3 "$id": "https://xasp-navigator.alviano.net/dag.schema.json",
4 "title": "DAG",

5 "description": "A DAG generated by xASP2",
6 "type": "object",

7  "properties": {

8 "nodes": {

9 "type": "array",

10 "items": {

11 "type": "object",

12 "properties": {

13 "id": { "type": "number" 1},

14 "label": { "type": "string" 1},
15 "x": { "type": "number" I},

16 "y": { "type": "number" }

17 }

18 3

19 },
20 "links": {
21 "type": "array",
22 "items": {
23 "type": "object",
24 "properties": {
25 "source": { "type": "number" },
26 "target": { "type": "number" },
27 "label": { "type": "string" }
28 }
29 3
30 }
31 1,
32 "required": ["nodes", "links"]
33 }

Fig. 12: JSON Schema of DAGs visualized in xASP navigator

mario.alviano/xasp-navigator/). The application is written in Svelte (https:
//svelte.dev/),amodern Javascript framework and a concrete alternative to broadly
adopted frameworks such as Angular [29].

From the usability perspective, xASP navigator provides a minimalist user in-
terface showing the DAG as reported in the figures of this article, and some additional
information is given on a side panel. Specifically, the list of rules and facts are shown
by default, and moving the pointer to a node expand the shown information to in-
clude details on the explanation of the pointed node. Moreover, the user interface
includes a filter to highlight nodes and arcs of interest, as well as for restricting the
list of rules and facts. Finally, the DAG and the list of rules and facts are represented
in the URL so that they can be easily shared with other users, essentially by simply
sending them a link.
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{
"nodes": [
{
"id": 0,
"label": "edge(a,b)\nsupport",
"x": 0.5,
"y": 2
},
{
"id": 1,
"label": "arc(b,a)\nsupport",
"x": 0,
"y": 1
},
{
"id": 2,
"label": "arc(a,b)\nchoice rule",
"x": 0.5,
"y": 0
}
1,
"links": [
{
"source": 1,
"target": O,
"label": "1 <= {arc(X,Y); arc(Y,X)} <=1 :- edge(X,Y).\nX,Y => a,b"
1,
{
"source": 2,
"target": 1,
"label": "1 <= {arc(X,Y); arc(Y,X)} <=1 :- edge(X,Y).\nX,Y => a,b"
},
{
"source": 2,
"target": O,
"label": "1 <= {arc(X,Y); arc(Y,X)} <=1 :- edge(X,Y).\nX,Y => a,b"
}
]
}

Fig. 13: JSON encoding of the DAG shown in Figure 3

From the development perspective, xASP navigator relies on the D3.js library
[5] for visualizing the DAG as a force-directed graph [18] with preferred points com-
puted by xASP2 by applying the Sugiyama layout [27]. The DAG is represented in
JSON [6] according to the JSON Schema given in Figure 12. For example, the DAG
shown in Figure 3 is represented as the JSON reported in Figure 13. Note that la-
bels of nodes also carry the information about the reason of derivation of each node,
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1 def show_navigator_graph(self, index: int = -1) -> None:

2 self.compute_igraph(index)

3 url = "https://xasp-navigator.netlify.app/#"

4 json_dump = json.dumps (

5 self .navigator_graph(index),

6 separators=(',', ':"')

7 ) .encode ()

8 url += base64.bb4encode(zlib.compress(json_dump)).decode() + 'J21'
9 webbrowser.open(url, new=0, autoraise=True)

Fig. 14: Method show_navigator_graph in xASP2

while labels of rules comprise a rule in input (as written in the input program) and
a substitution for its global variables. A DAG produced by xASP2 can be shown in
xASP navigator by calling the method show_navigator_graph, whose implemen-
tation is given in Figure 14; essentially, the DAG is computed (if not already done;
line 2), the URL is composed by compressing its JSON representation (lines 3-8) and
opened in the system browser (line 9).

6.2 Usage

The easiest way to use xASP2 is via the interface provided by the Explain class.
An instance of Explain must be obtained by means of the factory method the_prog
ram, passing the program II, the answer set A and the (true or false) atom to ex-
plain a. Obtained an instance of Explain, the methodsminimal _assumption_set,
explanation_sequence and explanation_dag can be used to obtain facts repre-
senting the artifacts involved in the explanation process. Additionally, method show_
navigator_graph can be called to open the graph in the xASP navigator applica-
tion (see Figure 14). A code snippet materializing the running example is shown in
Figure 15.

An important aspect to take into account in using xASP2 is that, by design, true
atoms are only explained by support, and choice rules with true bodies are consid-
ered a support for all true atoms in their heads. Depending on the program in input,
the produced explanation can be oversimplified due to such design choices. For ex-
ample, consider the program reported in Figure 16 — whose unique answer set com-
prise all atoms in the program but missing - and the explanation shown in Figure 17
for the query atom. It can be observed that the query atom is explained by the sup-
port provided by the rule at line 1, and the body atom direct_support is explained
by the support provided by the choice rule at line 5. While such an explanation jus-
tifies the presence of query in the answer set, it can be considered oversimplified
as the choice rule does not necessarily enforces the truth of its head atoms; again,
this is a design choice, and in this work we opted for justifying the presence and ab-
sence of atoms, rather than justifying the mandatory presence and absence of atoms.
Nonetheless, the program can be rewritten to obtain more detailed explanations.
First of all, the choice rule at line 5 can be rewritten in terms of cyclic negation as
shown below:
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1 from xasp.entities import Explain
2 from dumbo_asp.primitives import Model

3 explain = Explain.the_program("""
4 edge(a,b). edge(a,d). edge(d,c).
5 source(a). source(b). sink(c). threshold(0).

6 1 <= {arc(X,Y); arc(Y,X)} <=1 :- edge(X,Y).

7 reach(X,X) :- source(X).

8 reach(X,Y) :- reach(X,Z), arc(Z,Y).

9 fail(X,Y) :- source(X), sink(Y), not reach(X,Y).
10 :- threshold(T), #sum{1,X,Y : fail(X,Y)} > T.
11 nnn strip(),

12 the_answer_set=Model.of_program("""

13 edge(a,b). edge(a,d). edge(d,c).

14 source(a). source(b). sink(c). threshold(0).

15 reach(a,a). reach(a,c). reach(a,d).

16 reach(b,a). reach(b,b). reach(b,c). reach(b,d).
17 arc(b,a). arc(a,d). arc(d,c).

18 uun),
19 the_atoms_to_explain=Model.of_atoms("arc(a,b)"),
20 )

21 # print(explain.minimal_assumption_set())
22 # print(explain.explanation_sequence())
23 # print(explain.explanation_dag())

24 explain.show_navigator_graph()

Fig. 15: xASP2 generating the DAG for I1,,,, Ay, and query arc(a,b)

1 query :- direct_support.

2 :- indirect_support, not direct_support.
3 indirect_support :- fact, not missing.

4 fact.

5 {direct_support}.

Fig. 16: A program leading to the oversimplified explanation shown in Figure 17

query direct_support
explained by support explained by support

Fig. 17: The oversimplified explanation generated for the program reported in Fig-
ure 16, its unique answer set and the query atom

direct_support :- not direct_support'.
direct_support' :- not direct_support.
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query direct_support
explained by support explained by support

Fig. 18: The oversimplified explanation generated for the program reported in Fig-
ure 16 with the rewritten choice rule line 5, its unique answer set and the query
atom

query :- direct_support.

:- indirect_support, direct_support'.
indirect_support :- fact, not missing.
fact.

direct_support :- not direct_support'.
direct_support' :- not direct_support .

Fig. 19: The program reported in Figure 16 rewritten by eliminating choice rules and
negative literals in constraints

A indirect_support

auery dtrect_support direct_support
explained by upport explained by suppert explaned by reqined to falsfy ody

Fig. 20: A more detailed explanation generated using the rewritten program reported
in Figure 19, its unique answer set and the query atom

This way, the support provided by the choice rule is conditioned by the assumption
on the falsity of direct_support', as shown in Figure 18. As a second observation,
note that the constraint at line 2 actually enforces truth of direct_support, which
however we do not capture by design (constraints are only used to justify falsity). In
order to capture such an inference, negative literals can be rewritten by introducing
(or reusing) auxiliary symbols. In this example, the constraint at line 2 is replaced by
:- indirect_support, direct_support'.
asin fact direct_support' is the complement of direct_support. The rewritten
program is reported in Figure 19, and the associated explanation is shown in Fig-
ure 20.

7 Related Work

As mentioned in the introduction, our work is in the context of XAlI, which in turn
can be applied to debug by identifying a set of rules that justifies the derivation of
a given atom. For example, if an atom «a is supposed to be false in all answer sets
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Table 2: Summary of compared features

System (ifany)  Acyclic Linguistic Explanation for System
and reference explanation extentions false atoms availability

xclingo [8] Yes None No Yes
s(CASP) [3] Yes Constraints Yes Yes
Visual-DLV [24] Yes Constraints No Yes
spock [7] Yes Constraints No Yes
DWASP [13] Yes Constraints No Yes
[25] No None Yes No
[30] Yes None Yes No
ASPeRiX [4] Yes Constraints Yes Yes
LABAS [26] No None Yes Yes
[20] No Aggregates Yes No
xASP2 Yes Aggregates and Constraints Yes Yes

of a program IT but appears in some answer set A, an explanation graph of a could
help to understand which rules are behaving anomalously. Therefore, in this section
we consider some debugging tools for ASP, as well as state-of-the-art XAl systems for
ASP. Table 2 reports a summary of the compared features: whether the explanation
is guaranteed to be acyclic; whether the input program may include aggregates and
constraints; whether the query atom can be false in the answer set; and whether the
system is available for experimentation.

xclingo [8] can generate derivation trees for an atom in an ASP computation.
Derivation trees are obtained by adding to the input program trace_rule and trace
annotations, which are then compiled into theory atoms and auxiliary predicates.
Then, the explanations are obtained by decoding the answer sets of the modified
program. xclingo 2.0, the latest release of xclingo [9, 10], introduces new annota-
tions: mute for atoms and mute_body for rules. The annotations serve to prune the
edges and exclude nodes explanations, thus aiding in information filtering. While
our system maintains edges and nodes in the DAG, it leverages visualization capa-
bilities from xASP navigator to enhance exploration and navigation. Nonetheless,
the possibility to control the granularity of the explanation is an interesting feature
that we may include in future releases of the navigator. Differently from our system,
xclingo and xclingo 2.0 do not support some linguistic constructs such as con-
straint, and cannot include negative literals in their explanations. For example, given
a program Iy = { a. b — a, not c.} and its answer set {a, b}, asking for why b is true,
the explanation from xclingo 2.0 is as follows:

*

| 1__a

The DAG associated with atom b is shown in Figure 21.

s(CASP) [3] leverages top-down Prolog computation to generate a justification
tree in natural language for Constraint Answer Set programs. Due to Prolog compu-
tation, different justifications are produced when the order of atoms in rules or the
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expla ed

b
explained by support

Fig. 21: The DAG for b given the program Il = {a. b — a, not c.} and its answer set
{a, b}.

order of rules in the program is changed [28]. Note that our explanation graphs are
not affected by program reordering.

Visual-DLV [24] is a GUI for developing and testing DLV programs, which in par-
ticular provides a command to examine why an atom is true in the latest computed
answer set. Such a question is answered by providing the reason that led the solver
infer the atom, among them the possibility that the atom is a branching literal (a
literal guessed to be true by the backtracking algorithm). Differently from the ap-
proach proposed in this paper, in Visual-DLV the link with the original program is
weak due to several simplifications implemented by the grounder and the solver.
Moreover, while our approach minimizes the atoms whose truth value must be as-
sumed, Visual-DLV by design does nothing to simplify the amount of data shown
to the user to explain the derivation of an atom. For example, the answer set {b} of
My ={a<—notbh a<—bc b<—nota. c— a, b} maybe obtained by branching
on not ¢, inferring nothing, and then on not a, inferring b. Asking for why c is false,
would result in the answer “because not c is a branching literal.” xASP2 assumes the
falsity of a, from which the truth of b and the falsity of ¢ can be inferred.

spock [7] makes use of tagging techniques [12] to translate the input program
into a new program whose answer sets can be used to debug the original program.
The information reported to the user includes rules whose body is true (applicable
rules), rules whose body is false (blocked rules), and abnormality tags associated
with completion and loop formulas. For I1,,, and the answer set {b}, spock detects
the fact that the third rule is applicable, and that the other rules are blocked; the exact
reason for which a rule is blocked is not reported. Within this respect, our approach
is simpler and focuses on easy-to-understand inference rules that can be clearly vi-
sualized via a DAG like the one in Figure 22.

DWASP [13] is aimed at identifying a set of rules that are responsible for the ab-
sence of an expected answer set. It combines the grounder gringo [14] and an ex-
tension of the ASP solver WASP [1], and introduces the gringo-wrapper to “disable"
some grounding simplifications. The expected, absent answer set is encoded as a set
of constraints, so that its combination with the input program has no answer set at
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b
explained by support

@
explained by required to falsify body

Fig. 22: Induced DAG on the vertices reachable from c for the MAS {a} of I1,,, (Sec-
tion 7)

all, and minimal unsatisfiable subsets (MUSes) can be computed. Some questions
are asked to the user so to select one MUS that makes more sense to investigate for
the absence of the answer set; in fact, at that point the user has a hopefully small set
of rules to investigate for bugs.

Explanation graphs can be given in terms of off-line justifications [25, 30], pos-
sibly containing cycles among false atoms [25]. For example, given I1f = { a < b.
b — a. } and the answer set @, [25] explains the falsity of a by a cycle between a and
b; xASP2 and [30], instead, use the fact that a is false in the well-founded model of
I1y. We also observe that [30] fixes the assumption set to the false atoms that are
left undefined by the well-founded model. On-line justifications are produced by
ASPeRiX [4], which implements a search procedure based on the selection of rules
rather than literals. In this case the explanation is produced while searching an an-
swer set, and it is not possible to specify an answer set of interest. Other approaches
relying on justifications and resulting in possibly cyclic explanation graphs are based
on assumption-based argumentation, like LABAS [26], or on trees of systems, as pro-
posed in [20]. Interestingly, [20] deals with aggregates; however, a system implement-
ing the approach of [20] is not discussed or released.

Finally, comparing xASP2 with the previous version of xASP that lacks support
for extended language constructs such as aggregates, we observe that xASP2 was
completely redesigned by replacing several algorithms implemented in procedural
programming languages and Prolog with more declarative meta-encoding program-
ming powered by mainstream ASP engines. As can be seen from Table 2, our system
is capable of providing explanations for false atoms and does not lead to cyclic ar-
gumentation in the explanation. xASP2 is the only system that tackles a program
that includes both aggregates and constraints. Moreover, the explanation DAGs pro-
duced by xASP2 can be visualized in an interactive web user interface that we expect
to describe in future publications.

8 Conclusion

We formalized and implemented a system for XAI targeting the ASP language and
powered by ASP engines. The presence or absence of an atom in an answer set is ex-
plained in terms of easy-to-understand inferences originating from a hopefully small
set of atoms assumed false. The explanation is shown as a DAG rooted at the atom
to be explained, and can be computed in a few seconds in our test cases. DAGs are
shown in the form of an interactive representation in a web browser, and can be eas-
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ily shared by sending the URL in the address bar of the browser. The automation
of the program rewriting to enrich the generated explanation DAGs constitutes an
interesting line of future research.
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