
Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University

Modules and Signature Declarations for

A-Prolog: Progress Report

Marcello Balduccini

Knowledge Representation Lab

Computer Science Department

Texas Tech University

May 14, 2007

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 1

Current Situation

• A-Prolog lacks well-established software engineering tools

and methodologies to help in encoding knowledge about

complex domains.

• Most existing proposals involve a substantial language re-

design, or a drastic shift of perspective (e.g. adoption of

object oriented programming paradigm).

As a result, most people still use “basic” A-Prolog, and come

up with ad-hoc solutions for the development and integration of

complex programs.

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 2

Our Approach

We propose a small extension of A-Prolog, called RSig, that:

• Does not involve any shift in perspective.

• Can be learned easily.

• Involves only minor changes to existing A-Prolog programs.

• Can be easily implemented on top of existing grounding soft-

ware (an extension of lparse is available online).

We believe this is an important step in bridging the gap between

current program development and the sophisticated languages

that have been proposed.

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 3

A Motivating Example

Let us build a small theory of chemical weapons, Πw:

nerve agent(tabun). nerve agent(sarin).
choking agent(phosgene). choking agent(chlorine).

% Ontology of agents
agent(A)← nerve agent(A).
agent(A)← choking agent(A).

% Agents are normally deadly
deadly(A)← agent(A),not ab(A),not ¬deadly(A).

% Choking agents are not deadly (in low-to-medium dosage)
¬deadly(A)← choking agent(A).

% If a deadly agent has been employed, order evacuation
o(order(evacuation), T)← agent(A), h(employed(A), T), deadly(A).

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 4

A Motivating Example (cont’d)

Now consider a program to monitor intelligence agent reliability,
Πm, from [Gianoutsos, 2005]:

% Normally, agent’s reports are true.
h(L, T)← about step(R, T), content(R, L),not ab(R, T).
% An exception to this are currently unemployed agents.
ab(R, T)← agent(A), author(R, A), h(¬employed(A), T).

Let S1 be the scenario:

report(r1). about step(r1,0). author(r1, john). content(r1, no danger).
agent(john). h(employed(john),0).

As one would expect, S1 ∪Πm entails h(no danger,0).

Chemical weapons are not involved, so S1∪Πm, Πw are unrelated.

However, S1 ∪Πm ∪Πw also entails o(order(evacuation),0)!!

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 5

A Motivating Example (cont’d)

o(order(evacuation),0) follows from:

• agent(john). h(employed(john),0).

• deadly(A)← agent(A),not ab(A),not ¬deadly(A).

• o(order(evacuation), T)← agent(A), h(employed(A), T), deadly(A).

There is unintended interaction between S1 ∪ Πm and Πw, be-

cause agent (and employed) have different meanings in the two

programs.

In practice, this substantially complicates the development of

large programs.

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 6

Proposed Solution

• Structure programs in modules.

• Each module has a clearly defined input/output interface.

• Internal relations and functions (not part of the interface)

are hidden from the other modules.

• The signature of the language used in each module is explic-

itly specified.

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 7

Motivating Example, Revisited

Consider a module Mw containing Πw and input/output interface:

#module chem agents.
#import rel h(,).
#export rel agent().
#export rel o(,).
...

and a module Mm for Πm, with interface:

#module int monitor.
#import rel h(,).
#import rel agent().
#import rel about step(,), author(,),
...

From the declarations, the interaction between the two modules

is now evident.

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 8

Removing the Interaction

Let us modify the interface of Mw as follows:

#module chem agents.
#import rel h(,).
#export rel chem agent().
#export rel o(,).
...

and add to the module a rule:

chem agent(A)← agent(A).

which maps the input/output relation chem agent to the internal

relation agent.

S1 ∪Mm ∪Mw does not entail o(order(evacuation),0).

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 9

Specifying the Signature

In RSig, the signature of a relation r is specified by a statement:

#sig rel r(p1, p2, . . . , pk).

where pi’s are names of sorts.

Informal reading: “the arguments of r are of sorts p1, . . ., pk.”

The signature of a function f is specified as:

#sig func f(p1, p2, . . . , pk)→ p0.

Informal reading: “the arguments of f are of sorts p1, . . ., pk,

and the terms formed by f are of sort p0.”

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 10

Signatures for the Example

Signature of the input for the example:

#sig rel about step(report, time), author(report, agent), content(report, fluent).
#sig rel h(fluent, time), o(action, time).
#sig func employed(agent)→ fluent, no danger → fluent.

together with sort definitions, e.g.:

time(0). time(1). time(2). . . .
report(r1). report(r2). . . .

Signature for Mw:

#sig rel deadly(agent), ab(agent).

Signature for Mm:

#sig rel ab(report, time).

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 11

Advantages of Signatures

• Improved readability of the program.

• Compared with lparse-style grounding:

¦ Free use of variables – no need to remember and comply

with association variable ↔ domain.

¦ Simplified handling of cardinality atoms.

• Compared with dlv-style grounding: smaller ground instance.

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 12

Cardinality Atoms: lparse and RSig

Consider the following lparse programs and their groundings:

P1 =

{
d(0..2). #domain d(Y).
1{p(Y Y) : d(Y Y)}1.

gr(P1) =



 1{p(0), p(1), p(2)}1.

P2 =

{
d(0..2). #domain d(Y).
1{p(Y) : d(Y)}1.

gr(P2) =

{
1{p(0)}1. 1{p(1)}1.
1{p(2)}1.

In RSig, the programs:

P3 =





d(0..2).
#sig rel p(d).
1{p(Y)}1.

P4 =





d(0..2).
#sig rel p(d).
1{p(Y Y)}1.

have the same grounding:

1{p(0), p(1), p(2)}1.

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 13

Conclusions

• Most existing software engineering methodologies involve sub-
stantial language redesign, or shift of perspective (e.g. OOP).

• This discourages their adoption, in particular for existing pro-
grams/projects.

¦ RSig is a small extension of A-Prolog.

¦ It does not involve any shift of perspective or language re-
design.

¦ Can be learned easily.

¦ Involves only minor changes to existing programs.

¦ Can be easily implemented on top of existing grounding soft-
ware (extention of lparse available online).

Modules and Signature Declarations for A-Prolog: Progress Report Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 14

The Complete Program

#sig rel about step(report, time), author(report, agent), content(report, fluent).
#sig rel h(fluent, time), o(action, time).
#sig func employed(agent)→ fluent, no danger → fluent.

#module chem agents.
#import rel h(,).
#export rel chem agent(), o(,).
#sig rel deadly(agent), ab(agent).

chem agent(A)← agent(A).
nerve agent(tabun).
agent(A)← nerve agent(A). agent(A)← choking agent(A).
deadly(A)← agent(A),not ab(A),not ¬deadly(A).
¬deadly(A)← choking agent(A).
o(order(evacuation), T)← agent(A), h(employed(A), T), deadly(A).

#endmodule.

#module int monitor.
#import rel h(,), agent(), about step(,), author(,),
#sig rel ab(report, time).

h(L, T)← about step(R, T), content(R, L),not ab(R, T).
ab(R, T)← agent(A), author(R, A), h(¬employed(A), T).

#endmodule.

