
� � � ��� ��� � � 	 � � �
�
 � � � � �� � � � � � � �

� � � � �� � � � � � � � � � � � � � � � �

� �

��� � � � � � �	 � �
 � � � � � � � ��� � �

��
 � � � � � � � � � �

� �

� ��� � � � ��� � � � � � �

� � � � � ! " # $! � % & " � & ! � & ' � (�
) � ! * & + � ! ' $ � , � - ! % + � � � ,
� & % � & (� � () � ((� ! , #)
 $! � ! . � � % ! � ! , +) # %
 $!
 ! / % ! ! #)

 � � �� � � � � � � � � �

� 0 0 % # - ! "

��� ' $ & ! (� ! () # , "
1 2 3 4 5 6 7 5 8 9 : 9 ; < 2 7 1 9 = = 4 < < 7 7

� $ � & 	 & % & (

��& $! >�	 & % % �

? (& " � � � % � �) + ' $ � @

� � ' $ & % " ��& + # ,

� ' ' ! 0 ! "

A # $, 	 # % % ! ((�
B 7 3 : 9 ; < 2 7 C 5 3 D E 3 < 7 F G 2 9 9 H

 ! ' ! � � ! % � I J J K

Copyright 2005, Marcello Balduccini

To Sara and Nicole.

Nicole, if one day you’ll

be reading this, be kind

in pointing out the

mistakes...

ACKNOWLEDGMENTS

This work has been substantially influenced by my advisor, Michael Gelfond, who

provided me with constant help and support along all these years. I am deeply grateful

to him for all he taught me, and in particular for showing me what it means to be

a good researcher. I will do my best to follow his example in my future professional

life.

I would like to thank all the members of my dissertation committee, Chitta Baral,

Matthew R. Barry, Vladimir Lifschitz and Richard Watson for all their comments,

which were invaluable in improving the quality of this dissertation.

I am very grateful to Daniel E. Cooke, Chair of the Computer Science Department,

for making such a pleasant research environment possible, and for his support and

encouragement since my first day at Texas Tech.

I am also thankful to all the present and former members of the Knowledge Repre-

sentation Laboratory (KRLab) for their friendship and many interesting discussions.

In particular, I would like to thank Monica Nogueira for inviting me to join the re-

search on the Space Shuttle; Joel Galloway for being such a good friend and for his

help in my first days as a graduate student; Veena Mellarkod for her support and for

so many the enjoyable discussions on all sorts of topics.

I would like to thank United Space Alliance and NASA, whose funding through

the Computer Science department has allowed me to concentrate on research all these

years.

I am very grateful to my parents, because without their advice I would have never

been here. Thank you for showing me the wonders of the world, for teaching me to

be curious and not to be afraid of challenges. Most of all, thank you for encouraging

me to follow my aspirations, even when that took me far away from you.

Finally, none of this would have been possible without the support, help and

understanding of my wife Sara and my daughter Nicole. I am deeply grateful to

them for encouraging me all along, bearing with me (not necessarily in relation to

ii

this dissertation), and for re-organizing their lives around my research in these past

months.

Marcello Balduccini

Texas Tech University

December 2005

iii

CONTENTS

ACKNOWLEDGMENTS . ii

ABSTRACT . vii

LIST OF FIGURES . ix

I THE GOAL OF THIS RESEARCH 1

II BACKGROUND . 6

2.1 Environments of Interest . 6

2.2 A-Prolog . 7

2.3 Action Language AL . 13

2.3.1 Action Signature of ALd 14

2.3.2 Syntax of ALd . 16

2.3.3 Semantics of ALd . 18

2.3.4 History Description Language, ALh 20

2.3.4.1 Syntax of ALh . 20

2.3.4.2 Semantics of ALh . 21

2.3.5 Query Language, ALq . 22

2.4 The Agent’s Control Loop . 24

III AGENT BEHAVIOR: AN EXAMPLE 26

IV ENCODING OF AL IN A-PROLOG 34

4.1 Normal Form of AL . 34

4.2 Encoding of Action Descriptions 37

4.2.1 Translation of the Laws of AL 38

4.2.2 Translation of Action Descriptions 40

4.3 Encoding of Domain Descriptions 47

4.4 Computing the Entailment Relation 49

V SUFFICIENT CONDITIONS FOR DETERMINISM OF ACTION

DESCRIPTIONS . 50

5.1 Definition of the Condition . 50

iv

5.2 Checking for Determinism with A-Prolog 62

VI REASONING ALGORITHMS . 72

6.1 Planning . 72

6.1.1 USA-Advisor . 76

6.1.1.1 System’s Design . 77

6.1.1.2 Plumbing Module . 78

6.1.1.3 Valve Control Module 80

6.1.1.4 Basic Valve Control Module 81

6.1.1.5 Extended Valve Control Module 82

6.1.1.6 Circuit Theory Module 84

6.1.1.7 Planning module . 86

6.2 Unexpected Observations . 89

6.2.1 Diagnosis . 92

6.2.1.1 Basic Definitions . 94

6.2.1.2 Computing candidate diagnoses 95

6.2.1.3 Finding a diagnosis 101

6.2.1.4 Diagnostics and repair 104

6.2.2 Learning . 106

6.2.2.1 Computing candidate corrections 112

6.2.2.2 Finding a correction 132

VII CR-PROLOG . 136

7.1 Syntax of basic CR-Prolog . 136

7.2 Semantics of basic CR-Prolog 138

7.3 CR-Prolog . 140

VIII CR-PROLOG BASED REASONING ALGORITHMS 141

8.1 CR-Prolog and the Selection of Best Plans 141

8.2 The Selection of Best Diagnoses 147

8.3 The Selection of Best Corrections 151

IX RELATED WORK . 154

v

9.1 Agent Architectures and Execution Monitoring 154

9.2 Conditions for Determinism of Action Descriptions 158

9.3 Planning . 160

9.4 Diagnosis . 161

9.5 Learning . 164

9.6 CR-Prolog . 165

X CONCLUSIONS AND FUTURE WORK 171

10.1 Conclusions . 171

10.2 Future Work . 172

BIBLIOGRAPHY . 175

vi

ABSTRACT

Answer set programming is a knowledge representation methodology that com-

bines a high level of abstraction and direct computability. This dissertation shows

how complex rational agents can be built with the answer set programming method-

ology and the associated languages. We describe the design of agents capable of fairly

sophisticated reasoning, including planning, diagnosis, inductive learning. More pre-

cisely, we show reasoning algorithms that, given a formal description of the domain,

allow the agent to:

• generate plans, expected to achieve the agent’s goal under reasonable assump-

tions;

• monitor the execution of actions and detect unexpected observations;

• explain unexpected observations by:

– hypothesizing that some event occurred, unobserved, in the past;

– modifying the original description of the domain to match the observations.

The reasoning approach is model-based, with the domain model written in action

language AL, and shared by all the reasoning components. The ability to use a

single model for all the types of reasoning demonstrates the flexibility deriving from

the use of answer set programming. Moreover, having a single model increases the

ease of development, update and reuse of the domain description.

For the actual computation, the domain model is translated into A-Prolog using a

novel encoding from AL into A-Prolog. The encoding differs from the previous ones

in that it extracts, from the model in AL, information that support not only planning

and diagnosis, but also learning.

Two sets of reasoning components are presented. The first set is developed us-

ing A-Prolog. We demonstrate that the components in this set are capable of fairly

vii

sophisticated reasoning. Next, we show how the approach can be extended to sub-

stantially improve the quality of reasoning. For this, we develop CR-Prolog, a lan-

guage in which A-Prolog is augmented by consistency-restoring rules (cr-rules) and

preferences. The new constructs allow the encoding of qualitative preferences on the

solutions of reasoning problems. The second set of reasoning components is obtained

by extending the basic ones to allow the specification of preferences. This allows to

reason, for example, about plans satisfying, if at all possible, a collection of require-

ments, about most likely diagnoses, and about most reasonable modifications of do-

main models. We demonstrate how the quality of reasoning performed by this set of

components is substantially higher than that of the basic ones.

Since the reasoning techniques sometimes depend on whether the domain model

is deterministic or non-deterministic, we also present a sufficient condition for the

determinism of action descriptions. We show that the condition can be checked in

polynomial time, and describe an A-Prolog program that performs the test.

viii

LIST OF FIGURES

2.1 The Observe-Think-Act Loop . 24

3.1 Circuit AC . 27

6.1 Circuit ACdiag . 93

ix

CHAPTER I

THE GOAL OF THIS RESEARCH

“In life, unlike chess, the game

continues after checkmate.”

Isaac Asimov (1920-1992)

The goal of this research work is to investigate the use of answer set programming

and action languages in the design and implementation of intelligent agents. In

particular, we are interested in developing reasoning algorithms that, given a formal

description of the domain, allow the agent to:

• generate plans, expected to achieve the agent’s goal under reasonable assump-

tions;

• monitor the execution of actions and detect unexpected observations;

• explain unexpected observations by:

– hypothesizing that some event occurred, unobserved, in the past;

– modifying the original description of the domain to match the observations.

In this dissertation, agents capable of performing these tasks are called highly au-

tonomous, rational agents. The term “rational” denotes the fact that their behavior

is based on rational thinking. The term “highly autonomous” indicates that they

can deal with a broad range of unexpected circumstances of various kinds without

requiring external intervention.

To simplify the study, we assume that the agent and the domain satisfy the fol-

lowing conditions:

• the domain can be represented by a transition diagram (for a definition of

transition diagram, refer to Section 2.3);

1

• the agent is capable of making correct observations, performing actions, and

remembering the domain history;

• normally, the agent is capable of observing all relevant exogenous events occur-

ring in the domain;

• normally, the agent has correct and complete knowledge about the transition

diagram that describes the domain.

Our choice is justified by the fact that these assumptions hold in many realistic

domains and are suitable for a broad class of applications. Notice however that in

other interesting domains some of the assumptions, in particular the first two, do

not hold, e.g. when the effects of actions and the truth values of observations can

only be known with a substantial degree of uncertainty that cannot be ignored in the

modeling process. It remains to be seen if some of our methods can be made to work

in such situations.

This research makes use of previous work on architectures of intelligent agents and

on answer set based planning algorithms [44]. In recent years, an observe-think-act

control loop for intelligent agents (refer to Chapter II for details) has been suggested

[8], in which most of the reasoning is based on a formal model of the environment,

shared by all the reasoning modules. The formal model is specified using an action

language, as such high-level languages allow writing domain specifications that are

usually compact and easy to read, thus increasing the designer’s confidence in the

correctness of the formalization.

Approximately in the same period, a translation was found from some relevant

action languages (e.g. AL) into A-Prolog. Based on this translation, planning al-

gorithms were developed, in which the planning problem is encoded by an A-Prolog

program by means of a translation of the action language specification into A-Prolog,

and planning is reduced to finding the answer sets of such program (one-to-one corre-

spondence between plans and answer sets is formally proven). Although the feasibil-

ity of the approach was demonstrated in theory and with small examples, initially it

2

was not clear how this planning technique would scale to medium-sized applications.

Thus, the first step of this research work has been my contribution to a project

(USA-Advisor) aimed at determining the scalability of answer set based planning

techniques. The project and its successful results have been described in detail Monica

Nogueira’s Ph.D. Dissertation [57]. For a brief description, refer to Section 6.1.1.

Notice that the technique presented in [57] assumes that the action description

encoding the domain’s behavior be deterministic. Unfortunately, in general checking

whether a domain specification is deterministic is in itself a non-trivial task. In

fact, for anything but small domains, direct inspection of the domain specification is

unreliable, and tests on the transition diagram are not an option due to its typical

size. Therefore, we have found a sufficient condition for the determinism of action

descriptions (refer to Chapter V), which substantially extends result from [8, 9]. We

have also developed an A-Prolog implementation of such condition and have shown

that the test can be performed in polynomial time.

Next, we have turned our attention to diagnostic tasks. In this direction, we have

developed a theory of diagnosis, substantially simplifying and improving previous

work by [11]. In our approach [3], the reasoner’s task is that of finding exogenous

actions, occurred in the past without him noticing them, whose occurrence justifies

the agent’s observations. In this sense, diagnosis can be seen as “planning in the

past.” A particularly attractive feature of this view is that planning and diagnosis

share the same domain model and the same formalization of it. Based on the theory of

diagnosis, reasoning algorithms have been developed, which reduce the computation

of diagnoses to finding the answer sets of suitable logic programs. Finally, we have

proved correctness and completeness of the algorithms, we have implemented them,

and tested them on USA-Advisor. Diagnosis will be described in detail in Section

6.2.1.

Analysis of the algorithms for diagnosis has shown that, although reasonable di-

agnoses are always returned, often too many of them are found. To narrow the search

to “best” diagnoses, a way to specify preferences among them had to be developed.

3

In the initial steps of our investigation on the specification of preferences, we found

no natural, general way to specify preferences of this sort using A-Prolog.

This led us to the development of CR-Prolog – an extension of A-Prolog that allows

the specification of preferences on the candidate solutions of a problem. CR-Prolog

is described in Chapter VII. Together with Loveleen Kolvekal, we also developed an

inference engine for CR-Prolog, which was implemented as part of Loveleen’s Master

Thesis [41].

CR-Prolog is essentially based on abduction of rules. CR-Prolog programs contain

“regular rules”, which cannot be abduced, and “consistency-restoring rules” (or cr-

rules), which can be abduced. It is the separation into abducible and non-abducible

rules that allows a seamless integration of deductive and abductive reasoning in the

same program (refer to Chapter VII for a comparison with similar approaches).

Working with CR-Prolog, we have initially defined a methodology to specify

possible rare events, their relative likelihood, and a way to propagate preferences on

rules to preferences on possible solutions (notice that the propagation of preferences

is made somewhat more complex by the fact that preferences in CR-Prolog can be

dynamic). The methodology has been applied to diagnosis – exogenous actions are

viewed as rare events, with associated relative likelihood – and yielded a reduction

of the number of diagnoses returned, and a substantial increase in their quality.

Later we found that the methodology that had been developed for diagnosis can

be applied directly to planning as well: given a collection of requirements that plans

should satisfy, we view the violation of a requirement as a rare event. The introduction

of such “defeasible” requirements yields a substantial increase in the quality of plans.

The use of CR-Prolog in the reasoning modules is described in Chapter VIII.

To verify the applicability of our approach, we have implemented both planning

and diagnostic modules using CR-Prolog and tested them on several examples. The

planning technique has been successfully tested on medium-size examples including

an extension of USA-Advisor. The diagnostic technique has been tested on small

examples, and has yielded encouraging results. However, the efficiency of the inference

4

engine needs to be increased before a thorough assessment on more complex examples

can be performed.

Notice that the work described so far assumes the correctness of the action de-

scription. In some circumstances, however, the action description may be incomplete

or incorrect. For example, the correct behavior of a circuit may be completely known

in advance, but writing an action description specifying completely its behavior in

presence of faults may be difficult or even unfeasible. The last phase of this research

work consisted in developing a learning module that allows the agent to modify the

action description given its observations on the environment.

Working in this direction, we have developed a theory of learning that is in some

sense similar to the theory of diagnosis discussed earlier. One of its most important

features is that the theory of learning is based on the same domain model (and same

formalization of it) as diagnosis and planning. Based on the theory of learning, we

have also developed corresponding reasoning algorithms, reducing learning to the

computation of answer sets, and proofs of correctness and completeness. A detailed

description of the learning module can be found in Section 6.2.2. (From the point

of view of the existing research on learning, the reasoning performed by our learning

module can be classified as performing incremental inductive learning.)

Finally, we have extended the use of CR-Prolog to the learning module, making

it possible to specify preferences on the possible corrections of the action description.

The result is a substantial reduction in the number of possible corrections, and an

improved quality of the solutions. The use of CR-Prolog for learning is described in

Chapter VIII.

5

CHAPTER II

BACKGROUND

This chapter contains background information about the types of environments

that our agent is designed for, about action language AL, about the agent’s control

loop, and about answer set programming.

2.1 Environments of Interest

In the rest of this dissertation we will often use the term dynamic domain to

denote an environment whose state changes in response to the execution of actions.

Dynamic domains of interest in this dissertation are those satisfying the following

conditions:

1. the evolution of the environment occurs in discrete steps;

2. the state of the environment can be defined by a set of boolean statements

(called fluents, and later precisely defined);

3. actions are instantaneous and deterministic;

4. all fluents are observable (i.e. at any moment the agent can determine if they

are true or false).

These conditions are introduced to reduce the complexity of the presentation, and

to allow the reader to concentrate on the contributions of this dissertation. Almost

none of them is essential to the validity of this study. In fact, most can be relaxed

by adopting approaches already described in the literature: the boolean statements

mentioned in condition (2) can be replaced by expressions with numerical values like

in C+ [36]; actions with duration (3) can be dealt with by introducing processes

[63, 21, 22]; non-determinism (3) can be introduced in a way similar to [10]; non-

observable fluents (4) have been dealt with for example in [35].

6

2.2 A-Prolog

A-Prolog is a knowledge representation language with roots in the research on

the semantics of logic programming languages and non-monotonic reasoning [32, 33].

Over time, several extensions of the original language have been proposed [17, 56,

53, 23, 16]. In this dissertation, by the term basic A-Prolog we identify the language

introduced in [32], and later extended with epistemic disjunction [33, 31]. The term

basic A-Prolog programs is intended as a synonym of disjunctive program.

The syntax of A-Prolog is determined by a typed signature Σ consisting of types,

typed object constants, and typed function and predicate symbols. We assume that

the signature contains symbols for integers and for the standard functions and rela-

tions of arithmetic. Terms are built as in first-order languages.

By simple arithmetic terms of Σ we mean its integer constants. By complex

arithmetic terms of Σ we mean terms built from legal combinations of arithmetic

functions and simple arithmetic terms (e.g. 3 + 2 · 5 is a complex arithmetic term,

but 3 + · 2 5 is not).

Atoms are expressions of the form p(t1, . . . , tn), where p is a predicate symbol with

arity n and t’s are terms of suitable types. Atoms formed by arithmetic relations are

called arithmetic atoms. Atoms formed by non-arithmetic relations are called plain

atoms. We allow arithmetic terms and atoms to be written in notations other than

prefix notation, according to the way they are traditionally written in arithmetic (e.g.

we write 3 = 1 + 2 instead of = (3, +(1, 2))).

Literals are atoms and negated atoms, i.e. expressions of the form ¬p(t1, . . . , tn).

Literals p(t1, . . . , tn) and ¬p(t1, . . . , tn) are called complementary. By l we denote the

literal complementary to l.

Definition 2.2.1. A basic rule r (of A-Prolog) is a statement of the form:

h1 or h2 or . . . or hk ← l1, l2, . . . lm, not lm+1, not lm+2, . . . , ln. (2.1)

where l1, . . . , lm are literals, and hi’s and lm+1, . . . , ln are plain literals.

We call h1 or h2 or . . . or hk the head of the rule (head(r));

7

l1, l2, . . . lm, not lm+1, not lm+2, . . . , ln is its body (body(r)), and pos(r), neg(r)

denote, respectively, {l1, . . . , lm} and {lm+1, . . . , ln}.

The informal reading of the rule (in terms of the reasoning of a rational agent about

its own beliefs) is “if you believe l1, . . . , lm and have no reason to believe lm+1, . . . , ln,

then believe one of h1, . . . , hk.” The connective “not” is called default negation.

A rule such that k = 0 is called constraint, and is considered a shorthand of:

false← not false, l1, l2, . . . lm, not lm+1, not lm+2, . . . , ln.

Definition 2.2.2. A basic A-Prolog program is a pair 〈Σ, Π〉, where Σ is a signature

and Π is a set of basic rules.

In this dissertation we often denote programs of basic A-Prolog (and its extensions)

by their second element. The corresponding signature is denoted by Σ(Π). The terms,

atoms and literals of a program Π are denoted respectively by terms(Π), atoms(Π)

and literals(Π).

Notice that the definition of the syntax of basic A-Prolog does not allow the use

of variables. To simplify the presentation, in the rest of this dissertation we assume

that programs containing variables (denoted by capital letters) are shorthands for

the sets of their ground instantiations, obtained by substituting the variables with all

the terms of appropriate type from the signature of the program. The approach is

justified for the so called closed domains, i.e. domains satisfying the domain closure

assumption [61] that all objects in the domain of discourse have names in the language

of the program. Semantics of basic A-Prolog for open domains can be found in [7, 39].

The semantics of basic A-Prolog is defined in two steps. The first step consists in

giving the semantics of programs that do not contain default negation. We will begin

by introducing some terminology.

An atom is in normal form if it is an arithmetic atom or if it is a plain atom

and its arguments are either non-arithmetic terms or simple arithmetic terms. Notice

that atoms that are not in normal form can be mapped into atoms in normal form

8

by applying the standard rules of arithmetic. For example, p(4 + 1) is mapped into

p(5). For this reason, in the following definition of the semantics of basic A-Prolog,

we assume that all literals are in normal form unless otherwise stated.

A literal l is satisfied by a consistent set of plain literals S (denoted by S ² l) if:

• l is an arithmetic literal and is true according to the standard arithmetic inter-

pretation;

• l is a plain literal and l ∈ S.

If l is not satisfied by S, we write S 6² l. An expression not l, where l is a plain literal,

is satisfied by S if S 6² l. A set of literals is satisfied by S if each element of the set

is satisfied by S.

We say that a consistent set of plain literals S is closed under a program Π not

containing default negation if, for every rule

h1 or h2 or . . . or hk ← l1, l2, . . . lm

of Π such that the body of the rule is satisfied by S, {h1, h2, . . . , hk} ∩ S 6= ∅.

Definition 2.2.3 (Answer Set of a program without default negation). A

consistent set of plain literals, S, is an answer set of a program Π not containing

default negation if S is closed under all the rules of Π and S is set-theoretically

minimal among the sets satisfying the first property.

Programs without default negation and whose rules have at most one literal in

the head are called definite. It can be shown that definite programs have at most one

answer set. The answer set of a definite program Π is denoted by ans(Π).

The second step of the definition of the semantics consists in reducing the com-

putation of answer sets of basic A-Prolog programs to the computation of the answer

sets of programs without default negation, as follows.

Definition 2.2.4 (Reduct of a basic A-Prolog program). Let Π be an arbitrary

basic A-Prolog program. For any set S of plain literals, let ΠS be the program obtained

from Π by deleting:

9

• each rule, r, such that neg(r) \ S 6= ∅;

• all formulas of the form not l in the bodies of the remaining rules.

Definition 2.2.5 (Answer Set of a basic A-Prolog program). A set of plain

literals, S, is an answer set of a basic A-Prolog program Π if it is an answer set of

ΠS.

An interesting extension [30] of basic A-Prolog consists in the introduction of

constructs that simplify representation and reasoning with sets of terms and with

functions from such sets to natural numbers.

In this dissertation, we extend basic A-Prolog by adding to it s-atoms from [30],

which allow to concisely represent subsets of sets of atoms. The resulting language

will be called A-Prolog. Its syntax is defined as follows.

Definition 2.2.6. A s-atom is a statement of the form:

{X : p(X)} ⊆ {X : q(X)} (2.2)

where X is the list of all free variables occurring in the corresponding plain atom.

Informally, the statement says that p is a subset of q. In A-Prolog, literals and

s-atoms are disjoint sets. Literals and s-atoms are called extended literals. Rules are

defined as follows.

Definition 2.2.7. A rule (of A-Prolog) is a statement of the form (2.1), where li’s

are as before, and either (1) k = 1 and h1 is a s-atom, or (2) all hi’s are plain literals.

The reader may have noticed that, like in [30], negated atoms, ¬p, are not allowed

to occur in s-atoms. However, differently from there, we allow negated atoms to occur

in the head of the rules as well as in their bodies.

Notice that the combination of sets with classical and default negations introduces

some subtleties. Consider the following informal argument. Suppose we are given a

statement {X : p(X)} ⊆ {X : q(X)} and we know q(a) and ¬q(b), but have

10

no information about q(c). Clearly, p(a) satisfied the condition. But can we about

¬p(b)? And what about p(c) or ¬p(c)?

To restrict ourselves to cases in which the meaning of s-atoms is unambiguous, we

give the following definition of A-Prolog program.

Definition 2.2.8. An A-Prolog program is pair 〈Σ, Π〉, where Σ is a signature, Π

is a set of A-Prolog rules, and for every atom r(X) that occurs in the scope of an

s-atom, Π contains the rule:

¬r(X)← not r(X).

(which encodes the Closed World Assumption on r(X)).

Thanks to this restriction, the meaning of s-atoms in our programs is unambigu-

ous. Going back to the previous example, and assuming the Close World Assumption

for p and q is part of the program, it can be shown that, for every x, p(x) if q(x) and

¬p(x) otherwise.

To simplify the presentation, in the rest of this dissertation we will leave the

Closed World Assumption implicit in the case of predicates that never occur in the

scope of classical negation.

To define the semantics of A-Prolog, we introduce the following terminology. Let

Σ be a signature and S be a set of plain literals from Σ. A s-atom (2.2) from Σ is

true in S if, for any sequence t of ground terms from Σ, either p(t) 6∈ S or q(t) ∈ S.

The following definition is similar to the notion of reduct introduced earlier.

Definition 2.2.9 (Set-Elimination). Let Π be an arbitrary A-Prolog program. For

any consistent set S of plain literals, the set-elimination of Π with respect to S (de-

noted by se(Π, S)) is the program obtained from Π by:

• removing from Π all the rules whose bodies contain s-atoms not satisfied by S;

• removing all remaining s-atoms from the bodies of the rules;

11

• replacing rules of the form ls ← Γ, where ls is an s-atom not satisfied by S, by

rules ← Γ;

• replacing each remaining rule

{X : p(X)} ⊆ {X : q(X)} ← Γ

by a set of rules of the form p(t)← Γ for each p(t) from S.

Finally we are ready to define the notion of answer set of an A-Prolog program.

Definition 2.2.10 (Answer Set of an A-Prolog program). A consistent set of

plain literals S from the signature of program Π is an answer set of Π if it is an

answer set of se(Π, S).

A-Prolog rules of the form

{X : p(X)} ⊆ {X : q(X)} ← Γ (2.3)

are called selection rules. It can be noted that selection rules are closely related to

the choice rules

m{p(X) : q(X)}n← Γ (2.4)

introduced in [69, 56]. Proposition 5 of [30] makes this connection precise. Adapted

to the language used here, the proposition states the following.

Proposition 2.2.1. For every program Π such that:

1. Π contains a rule

{p(X) : q(X)} ← Γ;

2. no other rule of Π contains p in the head,

let Π++ be the program obtained from Π by replacing the choice rule with selection

rule (2.3). Then, S is an answer set of Π iff S is an answer set of Π++.

12

One limitation of our definition of A-Prolog with respect to the language of [69, 56]

is that it does not allow the specification of bounds, i.e. of the lower and upper number

of elements of the subset defined by {X : p(X)} ⊆ {X : q(X)}. For simple bounds

such as those used in this dissertation (we use only lower or upper bounds of 1) we

will use simple constraints, and avoid the introduction of the f-atoms from [30]. For

example, imposing a maximum limit of 1 on the cardinality of the set (assuming that

the arity of p is 1) can be achieved by means of the constraint:

← p(X1), p(X2), X1 6= X2.

Imposing a lower bound of 1 is equally easy:

← not some p.

some p← p(X).

To simplify the notation, from now on we use the statement:

m{p(X) : q(X)}n← Γ.

where m and n, if present, are 1, as an abbreviation of (2.3) together with the ap-

propriate constraints to limit the cardinality of p.

The next section describes the high-level language used in the formalization of do-

main descriptions. This language is intended to be used by humans when formalizing

the domain description. We will later see how the high-level specification is trans-

lated into A-Prolog in order to be used by the reasoning algorithms of the agent.

2.3 Action Language AL
Action languages [34] are formalisms used to talk about the effects of actions. In

these languages, the domain is represented by a transition diagram, i.e. a directed

graph with nodes corresponding to the states of the domain, and arcs corresponding

to transitions from one state to another. Arcs are labeled by actions, according to the

intuition that state transitions are caused by the execution of actions. In our agent

architecture, the agent is given in input a description of the domain that the agent

13

uses to perform its reasoning tasks (e.g. to determine whether a sequence of actions

achieves the desired effect).

Action languages are rather simple languages with respect to both syntax and

semantics. They are good candidates for the high-level specification of the domain

model: their relative simplicity and the clear intuitive reading of the statements usu-

ally allow the designer to have good confidence in the correctness of the specification

that he came up with.

The formalism used in this dissertation to describe the domain is called AL,

and essentially follows the description given in [8]. The main difference with [8]

is the introduction of the distinction between properties that depend on time and

properties that do not. (This distinction is used in the reasoning component that

performs inductive learning.)

Language AL is parametrized by an action signature, defining the alphabet used

in the language. As in [8], AL is divided in three components: an action description

language, a history description language, and a query language. The action descrip-

tion language, ALd, is used to describe the actions and their effects. The history

description language, ALh, specifies the history of the domain. The query language,

ALq, encodes queries about the domain. The next sections describe the various com-

ponents of AL.

2.3.1 Action Signature of ALd

An action signature of ALd is a tuple 〈C, V, PS, PF , NA, TS〉, where:

• C is a set of symbols for constants ;

• V is a set of symbols for variables ;

• PS is a set of symbols for static predicates ;

• PF is a set of symbols for fluent predicates ;

• NA is a set of symbols for action names ;

14

• TS is a set of non-negative integers 0, 1, 2,

Intuitively, static predicates are predicates whose truth does not depend on the state

of the domain; fluent predicates are predicates whose truth depends on the state of

the domain; the integers from TS are used to denote steps in the evolution of the

domain.

A term is either a constant or a variable. A fluent is a statement

f(t1, . . . , tn)

where f is a fluent predicate and ti’s are terms. A fluent literal is either a fluent or

its classical negation, ¬f(t1, . . . , tn). A static is a statement

r(t1, . . . , tn)

possibly prefixed by ¬, where r is a static predicate and ti’s are terms. An AL-literal

is either a fluent literal or a static. An elementary action is a statement

a(t1, . . . , tn)

where a is an action name and ti’s are terms. A compound action is a set {a1, . . . , an}
of elementary actions. Intuitively, the occurrence of a compound action corresponds

to the simultaneous occurrence of the elementary actions it consists of. To simplify

notation, we will sometimes use an elementary action, ae, in place of the corresponding

singleton, {ae}. Unless otherwise specified, in this dissertation the term action will

refer to elementary actions.

A ground fluent literal is a fluent literal that contains no variables. Similarly we

define ground statics, ground AL-literals, and ground elementary actions. A ground

compound action is a set of ground elementary actions. AL-literals and actions are

called tokens.

Given an action signature, Σ, we denote its constants, variables, terms, fluents,

fluent literals, statics, AL-literals, and actions by, respectively, const(Σ), var(Σ),

term(Σ), fluent(Σ), lit(Σ), static(Σ), pcond(Σ), and action(Σ).

15

2.3.2 Syntax of ALd

A dynamic law of ALd is a statement:

d : a causes l if c1, . . . , cn (2.5)

where:

• d is a constant, used to name the dynamic law;

• a is a compound action;

• l is a fluent literal;

• ci’s are AL-literals.

Informally, a dynamic law says that, if action a were to be executed in a state in

which c1, . . . , cn hold, fluent literal l would be caused to hold in the resulting state.

The name of the law is not used to define the semantics of the language, and can

thus be omitted 1.

A state constraint of ALd is a statement:

s : caused l if c1, . . . , cn (2.6)

where s is the name of the state constraint, and l, ci’s are as before. Informally, a

state constraint says that, in every state, the truth of c1, . . . , cn is sufficient to cause

the truth of l. The keyword caused is optional and can be omitted.

An impossibility condition of ALd is a statement:

b : a impossible if c1, . . . , cn (2.7)

where b is the name of the impossibility condition, and a, ci’s are as before. Informally,

an impossibility condition states that action a cannot be performed in any state in

which c1, . . . , cn hold.

1In the chapter on the encoding of AL into A-Prolog, we will assume that a name has been

specified for each law, as this allows to simplify the presentation. The assumption however is not

essential and can be easily lifted.

16

We use the term law to refer to dynamic laws, state constraints, and impossibility

conditions. The body of a law is the set of its preconditions c1, . . . , cn. The head of

a law (2.5) or (2.6) is fluent literal l. The trigger of a law (2.5) or (2.7) is action a.

The name, body, head, and trigger of law w will be denoted by name(w), body(w),

head(w), and trigger(w) respectively. The set of the fluent literals that occur in

body(w) is denoted by bodyl(w). The set of statics from body(w) is bodyr(w). To

simplify the presentation, we define these functions so that, if w is a state constraint,

trigger(w) = ∅, and, if w is an impossibility condition, head(w) = ε (we assume that

ε does not occur in the action signature).

The static knowledge base is a complete set of statics. Intuitively, the static

knowledge base lists the statics that are true.

Definition 2.3.1 (Action Description). An action description of AL is a tuple

〈Σ, L, K〉, where:

• Σ is an action signature;

• L is a set of laws;

• K is a static knowledge base.

Given an action description, AD, we denote its signature, laws, and static knowl-

edge base by, respectively, sig(AD), law(AD), and stat kb(AD).

In this dissertation, we define static knowledge bases by means of consistent A-

Prolog programs with a unique answer set. This approach allows an elegant and con-

cise encoding of rather complex static knowledge bases. To simplify the presentation,

we allow action descriptions to be specified by tuples 〈Σ, L, ΠK〉, where Σ is an action

signature, L is a set of laws, and ΠK is a consistent A-Prolog program with a unique

answer set. Such a tuple denotes the action description 〈Σ, L, K〉, where K is the

answer set of ΠK .

17

2.3.3 Semantics of ALd

The semantics of an action description, AD, is given by defining the transition

diagram, trans(AD), that corresponds to AD. In the rest of this section, we con-

sider laws containing variables as an abbreviation for the collection of their ground in-

stances. For this reason, unless otherwise stated, we restrict our attention to ground

tokens. To define precisely the semantics of ALd, we need the following terminology

and notation.

We say that a fluent literal, l, holds in a set of fluent literals S if l ∈ S. A static,

r, holds in AD if r ∈ stat kb(AD). The notion is extended to sets of fluent literals

and sets of statics as usual.

Definition 2.3.2 (Satisfaction of AL-literals). A set of AL-literals,

C = {c1, . . . , cn}, is satisfied by a set of fluent literals S (under AD) if the fluent

literals of C hold in S and the statics of C hold in AD.

Definition 2.3.3 (Closedness). A set S of fluent literals is closed under a state

constraint, w, of AD if head(w) holds in S whenever body(w) is satisfied by S. A set

S of fluent literals is closed under a set, Z, of state constraints if it is closed under

each element of Z.

Definition 2.3.4 (Set of Consequences). The set CnZ(S) of consequences of S

under Z is the smallest set of fluent literals that contains S and is closed under Z.

Definition 2.3.5 (State). A state is a complete and consistent set of fluent literals

(i.e. for any fluent, f , either f or ¬f belongs to the set, but not both), closed under

the state constraints of AD.

Given a ground compound action, a, a state, σ, and a dynamic law, d, of the form

(2.5), we say that a fluent literal, l′, is a direct effect of a in σ w.r.t. d if:

• a ⊇ trigger(d);

• l′ = head(d);

18

• body(d) is satisfied by σ.

Definition 2.3.6 (Set of Direct Effects). By E(a, σ) we denote the set of all

ground fluent literals that are direct effects of a in σ w.r.t. some dynamic law of AD.

Definition 2.3.7 (Impossibility of Actions). We say that ground action a is

impossible in state σ if there exists an impossibility condition, b, such that: (i) a ⊇
trigger(b), and (ii) body(b) is satisfied by σ. We say that a is executable in σ when

a is not impossible in σ,

Definition 2.3.8 (Transition Diagram). The transition diagram, trans(AD), en-

coded by an action description, AD, is the directed graph, 〈N, R〉, such that:

• N is the collection of all states of AD;

• R is the set of all triples 〈σ, a, σ′〉, where σ, σ′ are states and a is a compound

action, such that a is executable in σ, and

σ′ = CnZ(E(a, σ) ∪ (σ ∩ σ′)) (2.8)

where Z is the set of all state constraints of AD. State σ′ is called successor

state of σ.

The argument of CnZ in (2.8) is the union of the set, E(a, σ), of the direct effects

of a, with the set, σ∩σ′, of the facts that are “preserved by inertia”. The application

of CnZ adds the “indirect effects” to this union.

Notice that it is possible for the transition diagram to contain no arcs labeled by

an action, a, even though dynamic laws for a are specified in the action description.

Consider the action description:

ae causes p.

ae causes ¬p.

For any pair of states σ, σ′, CnZ(E(ae, σ) ∪ (σ ∩ σ′)) contains {p,¬p}. Since the

set if inconsistent, (2.8) is never satisfied, and the corresponding transition diagram

consists of two nodes, {p}, {¬p} and no arcs.

19

Definition 2.3.9 (Deterministic Action Descriptions). We call an action de-

scription deterministic if, for any state, σ, and action, a, there is at most one suc-

cessor state σ′.

The above definition of trans(AD) is based on results from [50, 49], which are the

product of a long investigation on the nature of causality. (See for instance, [42, 74].)

Finding this definition required a good understanding of the nature of causal effects of

actions in the presence of complex interrelations between fluents. An additional level

of complexity is added by the need to specify what is not changed by actions. The

latter, known as the frame problem, is often reduced to the problem of finding a concise

and accurate representation of the inertia axiom – a default which says that things

normally stay as they are [37]. The search for such a representation substantially

influenced AI research during the last twenty years. An interesting account of history

of this research together with some possible solutions can be found in [68].

2.3.4 History Description Language, ALh

To describe the history of the domain, we use integers from set TS in the action

signature to denote the step (in the evolution of the domain) that each observation

refers to. Intuitively, step s corresponds to the state of the domain reached after the

execution of s compound actions.

2.3.4.1 Syntax of ALh

Observations about the domain have two possible forms:

• hpd(a, s)

• obs(l, s)

where a is a ground action, l is a ground fluent literal, and s is a step. The first

statement informally says that action a was observed to occur at step s. The second

statement intuitively states that fluent literal l was observed to be true at step s. We

20

call the former observations about (occurrences of) actions, and the latter observations

about (the truth of) fluent literals.

We often use consistent A-Prolog programs with a unique answer set to compactly

encode sets of observations. The set of observations described by such an A-Prolog

program, Π, consists of the set of statements hpd(a, s), obs(l, s) from the answer set

of Π. When there is no ambiguity, we allow A-Prolog programs to be specified in

place of sets of observations.

Definition 2.3.10 (Recorded History). A (recorded) history of the domain is a

pair 〈H, cT 〉, where H is a set of observations and cT is a step, denoting the current

time step, satisfying the following conditions:

• cT > s for every hpd(a, s) ∈ H;

• cT ≥ s for every obs(l, s) ∈ H.

We often denote a history, 〈H, cT 〉, by HcT . To simplify the presentation, the

notation e ∈ HcT is used as an abbreviation of “e belongs to the set of observations,

H, of history HcT .”

Definition 2.3.11 (Domain Description). A domain description is a pair

〈AD,HcT 〉, where AD is an action description and HcT is a recorded history.

This definition completes the description of the syntax of ALh. Its semantics

is intuitively based on the set of paths in the transition diagram that match the

observations, as follows.

2.3.4.2 Semantics of ALh

Definition 2.3.12 (State-Action Sequence). A state-action sequence is a

sequence π = 〈σ0, a0, σ1, . . . , an−1, σn〉 such that σi’s are states and ai’s are

compound actions.

We say that the length of π is the number of states in it (in this case, n + 1). The

length of π is denoted by length(π).

21

To define the semantics of ALh, we also need the following notation. Given

a state-action sequence π = 〈σ0, a0, σ1, . . . , an−1, σn〉 and a non-negative integer k,

σ(π, k) denotes state σk from π, and act(π, k) denotes action ak. To simplify the

presentation, we define act(π, length(π)) = ∅.

Definition 2.3.13 (Path). A state-action sequence, π, is a path in trans(AD) if

for every 0 ≤ i < length(π), 〈σ(π, i), act(π, i), σ(π, i + 1)〉 is an arc from trans(AD).

Definition 2.3.14 (Model of a History). A path, π, in trans(AD) is a model of

HcT (with respect to AD) if length(π) = cT + 1 and, for every 0 ≤ s ≤ cT :

• act(π, s) = {a | hpd(a, s) ∈ HcT};

• if obs(l, s) ∈ HcT , then l ∈ σ(π, s).

In the sections on the reasoning algorithms of the agent, it will be often important

to be able to check if a history has at least one model. The next definition elaborates

on this idea.

Definition 2.3.15 (Consistency). We say that HcT is consistent (with respect to

AD) if it has a model. A domain description D = 〈AD,HcT 〉 is consistent if HcT is

consistent with respect to AD.

Next, we describe the query component of AL.

2.3.5 Query Language, ALq

Various reasoning tasks can be essentially reduced to answering queries about

properties of the domain. Our query language, ALq, consists of statements of the

form:

• h({l1, . . . , ln}, s)

• h after({l1, . . . , ln}, 〈a1, a2, . . . , ak〉)

22

where li’s are fluent literals, s is a step, and ai’s are compound actions. Intuitively, the

query h({l1, . . . , ln}, s) checks whether all the fluent literals are expected to hold at

step s of the evolution of the domain. The query h after({l1, . . . , ln}, 〈a1, a2, . . . , ak〉)
tests whether the sequence of actions 〈a1, . . . , ak〉 can be executed at the current

step of the evolution of the domain, and if l1, . . . , ln are expected to hold after the

execution of 〈a1, . . . , ak〉. The following definitions formalize the intuition.

Definition 2.3.16 (Entailment Relation). For every domain description D =

〈AD,HcT 〉:

• Model M entails a query h({l1, . . . , ln}, s) if:

– 0 ≤ s ≤ cT ;

– for every 1 ≤ i ≤ n, li ∈ σ(M, s).

• Model M entails a query h after({l1, . . . , ln}, 〈a0, a1, . . . , ak〉) if there exists a

path, π, in trans(AD) such that:

– π contains cT + k + 1 states;

– σ(π, s) = σ(M, s) for 0 ≤ s ≤ cT ;

– act(π, s) = act(M, s) for 0 ≤ s < cT ;

– act(π, cT + i) = ai for 0 ≤ i ≤ k;

– for every 0 ≤ i ≤ n, li ∈ σ(π, cT + k + 1).

• The history, HcT , entails a query Q if, for every model M of HcT , M entails

Q.

To simplify the notation, when the set of fluent literals that occurs in a query

is a singleton, we represent it by its only element (e.g., we write h(l, s) instead of

h({l}, s)). The entailment relation between a model, M , and a query, Q, is denoted

by M |=AD Q; the entailment relation between a domain description, D = 〈AD, HcT 〉,
and a query, Q, is denoted by HcT |=AD Q.

23

2.4 The Agent’s Control Loop

Our goal in this dissertation is to define an architecture for highly autonomous,

rational agents, where the reasoning algorithms:

• are based on the ASP paradigm;

• share the same domain description;

• reduce reasoning to checking for consistency of the domain description and to

computing the entailment relation;

• are provably sound and complete.

The architecture is based on the control loop in Figure 2.1, called Observe-Think-

Act loop.

1. observe the world;

2. interpret the observations;

3. select a goal;

4. plan;

5. execute part of the plan.

Figure 2.1: The Observe-Think-Act Loop

Every step of the loop corresponds to either an input/output operation (steps 1

and 5) or to the execution of a reasoning algorithm. In the rest of this dissertation,

the term reasoning component will be used as a synonym of reasoning algorithm.

Also, by core of a reasoning algorithm we mean the set of CR-Prolog programs used

in the algorithm.

Although it is possible to formalize a more complex architecture, e.g. where

the execution of the reasoning algorithms depends on the available computational

24

resources and other constraints, in this dissertation we will restrict our attention to

the simple observe-think-act loop above. This will allow us to focus on the theoretical

aspects of the design of the reasoning algorithms, and will simplify the proofs of the

properties of the architecture.

In the next chapter, we give an overall description the intended behavior of the

agent by means of a running example. The reasoning algorithms will be analyzed in

detail in the later chapters.

25

CHAPTER III

AGENT BEHAVIOR: AN EXAMPLE

“The true delight is in the finding out

rather than in the knowing.”

Isaac Asimov (1920-1992)

Let us begin by assuming that, when the agent loop is first executed, the agent is

initially given in input a domain description, D0 = 〈AD, H0〉, and a partially ordered

set of goals, G, where by goal we mean a finite set of fluent literals that the agent has

to make true. The partial ordering encodes the relative importance of the goals. By

cT we denote the current step in the evolution of the domain, and by Σ the action

signature of AD. Also, we denote the current domain description by D = 〈AD, HcT 〉
(the domain description can be modified by the reasoning algorithms).

In the architecture, we divide the elementary actions specified by the signature

of AD in agent actions and exogenous actions. Agent actions are those actions that

the agent can perform. Exogenous actions are performed by nature or by other

agents. The set of agent actions is denoted by actionag(Σ), and the set of exogenous

actions by actionex(Σ). The two sets of actions are assumed to be disjoint.

Compound agent actions are compound actions whose elements belong to

actionag(Σ). Similarly, compound exogenous actions are subsets of actionex(Σ).

Although exogenous actions may sometimes occur undetected by the agent, the

agent operates under the assumption of being able to observe all exogenous actions.

This assumption can be withdrawn if observations force the agent to conclude that

some exogenous actions occurred undetected in the past.

To explain the observe-think-act loop, we refer to the simple electrical circuit

shown in Figure 3.1, where switch sw1 controls bulb b1 and switch sw2 controls bulb

b2. The circuit is powered by a battery, batt.

The agent can change the position of a switch, sw, by performing action flip(sw).

If batt is malfunctioning, he can also replace it by performing action replace(batt).

26

sw2

b1 b2batt

sw1
−

+

Figure 3.1: Circuit AC

Finally, from time to time a bulb, b, may blow up – which is represented by the

occurrence of action blow up(b).

The state of the world is described by fluents:

• closed(SW): switch SW is closed;

• lit(B): blub B is lit;

• ab(B): bulb B is malfunctioning, i.e. blown up;

• ab(batt): batt is malfunctioning.

In the following examples, we assume that the agent is given an action description

stating that:

• flipping a switch inverts its position;

• action blow up(b) causes switch b to blow up;

• when switch swi is closed, bulb bi is lit, unless it is blown up or batt is malfunc-

tioning;

• when swi is open, bi is off;

• action replace(batt) replaces the battery with a functioning one.

27

At step 1 of the observe-think-act loop, the agent gathers observations about the

current state of the world. All the observations up to the current moment are recorded

in HcT . Notice that the observations gathered by the agent are possibly incomplete.

Example 3.1.1. Suppose all switches are currently open, and the state of the bulbs

and battery cannot be observed. Then, the agent at step 1 may gather observations:

{¬closed(sw1),¬closed(sw2)}.

After gathering the observations, the agent checks if they meet its expectations

about the current state of the world (step 2). More precisely, the agent’s expectations

are met by its observations when:

〈AD,HcT 〉 is consistent.

Our agent is designed to deal with inconsistency arising from:

• the undetected occurrence of some exogenous actions ; or

• incompleteness or incorrectness of the action description.

Example 3.1.2. Suppose the agent:

1. observes

{¬closed(sw1),¬closed(sw2),¬ab(b1),¬ab(b2),

¬lit(b1),¬lit(b2),¬ab(batt)}

2. performs flip(sw1)

3. observes

{closed(sw1),¬lit(b1)}

The observation ¬lit(b1) is unexpected, as the execution of action flip(sw1) normally

causes bulb b1 to become lit. A possible explanation is that action blow up(b1) occurred

together with flip(sw1). In fact, blow up(b1) would cause b1 to become blown-up, and

thus prevent it from becoming lit.

28

Inconsistencies due to undetected exogenous actions are dealt with by finding

which exogenous actions are likely to have occurred, undetected.

More precisely, the agent finds a recorded history, HcT
∗ , such that:

• HcT ⊆ HcT
∗ ;

• HcT
∗ \HcT is a subset of {hpd(a, s) | a ∈ actionex(Σ) ∧ 0 ≤ s < cT};

• 〈AD, HcT
∗ 〉 is consistent.

Intuitively, the task is accomplished by viewing the history as a symptom, and

reducing the problem of explaining the observations to that of computing the diag-

noses of the symptom. Since, in general, several diagnoses can explain the symptom,

the agent uses criteria (e.g., set-theoretic minimality) and tests (i.e., gathers further

observations) to determine which diagnosis is the most plausible.

Example 3.1.3. Going back to Example 3.1.2, the unexpected observation, ¬lit(b1),

can be explained by assuming that blow up(b1) occurred, undetected, together with

flip(sw1). To ensure that this is the correct diagnosis, the agent will then check if

ab(b1) is true.

If the occurrence of exogenous actions is not sufficient to explain the unexpected

observations, the agent tries to update the action description to match the observa-

tions. The update is obtained by adding and removing laws, and by modifying the

body of the existing laws.

More formally, the agent finds an action description, AD′, such that

〈AD′, HcT 〉 is consistent.

Again, in general, several sets of modifications can be used to restore consistency.

Hence, the agent is designed to perform tests to determine which set is likely to give

the best results (in terms of generality of the modification, and expected correctness

of the predictions in other states).

29

Example 3.1.4. Suppose the agent:

1. observes

{closed(sw1),¬closed(sw2),¬ab(b1),¬ab(b2),

lit(b1),¬lit(b2),¬ab(batt)}

2. performs flip(sw2)

3. observes

{closed(sw2),¬lit(b1),¬lit(b2)}

Observations ¬lit(b1),¬lit(b2) are unexpected. The agent tries to explain them ini-

tially by assuming that some exogenous actions occurred, undetected. The explana-

tion consists of the assumption that actions blow up(b1), blow up(b2) occurred when

flip(sw2) was performed.

Next, the agent tests the explanation. Notice that the occurrence of the two exoge-

nous actions would cause bulbs b1 and b2 to be blown. Checking whether ab(b1), ab(b2)

are true allows the agent to test if the explanation is correct.

Suppose the observations show that the two bulbs are not blown. This proves that

the explanation is incorrect. Since there are no other possible explanations based on

the occurrence of exogenous actions, the agent assumes that the action description

is inaccurate. A possible correction is the addition of a law saying that “ if sw1 and

sw2 are both closed, then batt becomes malfunctioning.” Notice that intuitively this

corresponds to assuming that some sort of overloading occurs in the battery when both

switches are closed.

The corrected domain description would entail that ab(batt) is currently true. To

validate the explanation, the agent tests whether ab(batt) is actually true.

After the agent has found a suitable interpretation for the observations, and has

updated accordingly the domain description in its memory, the agent selects which

goal to achieve (step 3) from set G. The selection of the current goal is performed

taking into account information such as the partial ordering of goals, the history

30

of the domain, the previous goal, and the action description (e.g., to evaluate how

hard/time-consuming it will be to achieve a goal).

The next step consists of computing a plan, i.e. a sequence of actions, to achieve

the selected goal (step 4).

More precisely, given a goal g from G, the agent finds a sequence 〈a1, . . . , ak〉 of

compound agent actions such that:

HcT |=AD h after(g, 〈a1, . . . , ak〉).

In domains involving exogenous actions and/or uncertainty, it is unlikely that the

execution of the plan will proceed exactly as the agent expects. (e.g., exogenous

actions take the agent to an unforeseen state). That is why, at step 5, the agent

selects only a part of the plan (e.g., the first compound action, a1), and executes it.

Next, the agent goes back to observing the world (step 1). This allows him to

find out whether the actions just executed took him to the expected state, and to

compensate for any unexpected effect.

Example 3.1.5. The following trace of the loop gives an example of the overall be-

havior of the agent. The agent:

1. observes

{closed(sw1),¬closed(sw2),¬ab(b1),¬ab(b2),

lit(b1),¬lit(b2),¬ab(batt)}
2. selects the goal of making lit(b2) true

3. finds the plan {flip(sw2)}

4. performs flip(sw2)

5. observes

{closed(sw2),¬lit(b1),¬lit(b2)}

6. explains the observations by adding to the action description a law stating that

“ if sw1 and sw2 are both closed, then batt becomes malfunctioning.”

31

7. finds the plan {flip(sw1), repair(batt)}

8. performs flip(sw1)

9. observes

¬closed(sw1)

10. performs repair(batt)

11. observes

{closed(sw2), lit(b2)}

The reasoning components of the loop are implemented in A-Prolog or an exten-

sion of it, called CR-Prolog (see Chapter VII). Simple procedural code fragments

connect the various components and perform the input/output steps.

This combination of procedural and declarative languages has several advantages:

• the connection between the reasoning components is made easy by the flexibility

of control of procedural languages;

• the small size of the procedural component simplifies the proof of correctness

of the implementation;

• the availability of a formal, declarative, semantics for A-Prolog and its exten-

sions simplifies the proofs of the relevant properties of the loop;

• the expressive power of A-Prolog allows for compact, yet easy to understand,

implementations of the reasoning components.

The three major reasoning tasks performed by the agent are:

• planning;

• diagnostics;

• inductive learning.

32

Planning is used by the agent at step 4 of the loop. Diagnostics and inductive learning

are used at step 2. Diagnostics is performed by the agent to find occurrences of

exogenous actions that explain the observations. Inductive learning, instead, is used

to correct the action description to match the observations. The reasoning algorithms

are described in detail later in the dissertation.

In the next chapter we describe how AL is encoded in A-Prolog.

33

CHAPTER IV

ENCODING OF AL IN A-PROLOG

Language AL is designed to be easily written and understood by humans. To be

used by the reasoning components of our agent, AL has to be translated into a form

that they can process. In this chapter, we describe a translation of AL into A-Prolog

rules.

We start by describing the encoding of action descriptions of AL into A-Prolog,

and state its properties. Notice that our encoding applies to ground as well as non-

ground action description. In the similar approaches from the literature (e.g. [3], [46]),

the encoding is defined only for ground action descriptions, and non-ground action

descriptions are viewed as abbreviations of their ground instances. By providing a

direct encoding of non-ground action descriptions, we preserve the connection among

the ground instances of non-ground rules, which is important in learning tasks.

After describing the encoding of action descriptions, we show the encoding of

domain descriptions. Finally, we explain how the encoding of domain descriptions

can be used to compute the entailment relation defined in Section 2.3.5.

To simplify the encoding, we assume that the action descriptions to be translated

follow some syntactic restrictions. We say that action descriptions that follow the

restrictions are in normal form. We will show later that this simplification does not

limit the expressive power of the language.

4.1 Normal Form of AL
To describe the notion of normal form, we need to introduce some terminology.

Given a token, m(t1, . . . , tn), the tuple 〈t1, . . . , tn〉 is called parameter list of the token,

and is denoted by $(m(t1, . . . , tn)) (if n = 0, the parameter list is the empty sequence

〈〉). Notice that, since the action description is possibly non-ground, $(m(t1, . . . , tn))

may contain variables. To simplify notation, we extend the notion of parameter list

to the special symbol ε (see Section 2.3.2), so that $(ε) = 〈〉. We say that a token

34

is unbound if its parameter list consists only of variables. The parameter list of a

compound action, a = {a1, . . . , an}, is defined as the concatenation of the parameter

lists of the elementary actions a1, . . . , an (the parameter list of an empty compound

action is 〈〉). The parameter list of a law w (denoted by $(w)) is defined as:

$(w) = $(head(w)) ◦$(trigger(w)) ◦$(bodyl(w))

where ◦ is denotes concatenation of tuples (notice that bodyr(w) is not part of the

parameter list of w).

A law, w, is in normal form if:

1. every fluent literal and action that occurs in w is unbound;

2. $(w) contains at most one occurrence of each variable;

3. for every static, ri, from the body of w, every element of $(ri) either occurs in

$(w) or is a constant.

An action description is in normal form if all its laws are in normal form. Action

descriptions in normal form have the following important property:

Theorem 4.1.1. For every action description in normal form, AD, and every law

w ∈ AD, $(w) consists only of variables.

Proof. By definition, the parameter list of w is the concatenation of the parameter

lists of its actions and fluent literals. Since AD is in normal form, the actions and

fluent literals of w are unbound, i.e. their parameter lists consist only of variables.

Hence the conclusion.

3

The next theorem proves that restricting the language to action descriptions in

normal form does not reduce its expressive power. The theorem is based on the con-

cept of equivalence between action descriptions: we say that two action descriptions,

AD1 and AD2, are equivalent if trans(AD1) = trans(AD2).

35

Theorem 4.1.2. For every action description, there exists an equivalent action de-

scription in normal form.

Proof. Let AD1 be an action description that is not in normal form, and w a law,

not in normal form, from AD1. Since w is not in normal form, it must contain at

least one of the following:

1. a fluent literal or action with at least one constant in its parameter list;

2. a variable that occurs more than once, not considering bodyr(w);

3. a variable that occurs in bodyr(w) but does not occur in $(w).

Now, let us consider the ground instantiation of AD1, AD∗
1 and the set of laws cor-

responding to the grounding of w1, w∗
1. Notice that, because of the way grounding is

defined, trans(AD1) = trans(AD∗
1).

It easy to see that the only reason for a ground instance of w not to be in normal

form is because some of its fluent literals or actions have some constants in their

parameter lists.

Therefore, let us construct AD2 from AD∗
1 as follows. We begin by adding the

definition of static eq, denoting the identity relation, to AD2.
1 Next, we replace each

law, w′, of AD∗
1 with a law, w2 obtained by substituting, in the fluent literals and

actions of w′, each constant ci with a variable, xi, so that each variable occurs only

once in the parameter list of w2 (new symbols for variables are added to the signature

of AD2 as needed). Finally, for every variable xi introduced above, we add to the body

of w2 a static eq(xi, ci).

Clearly, AD2 still satisfies requirements 2 and 3 of the definition of normal form.

Moreover, by construction, all the laws of AD2 satisfy requirement 1. Hence, AD2 is

in normal form. Moreover, from the fact that trans(AD1) = trans(AD∗
1), it is not

difficult to conclude that trans(AD1) = trans(AD2).

3

1For simplicity, we assume that eq does not occur in the signature of AD∗
1 .

36

In the rest of this chapter, we restrict our attention to laws and action descriptions

in normal form.

4.2 Encoding of Action Descriptions

In this section, we define a mapping, α, from action descriptions of AL into sets

of rules of A-Prolog. The mapping is initially defined for the elements of the action

signature, then for single laws, and finally extended to the entire action description.

We omit an explicit specification of the signature of the A-Prolog program ob-

tained by α. Rather, when writing A-Prolog rules, we will follow the usual convention

that words starting with an uppercase letter denote variables, while words starting

with a lower case letter denote constants, function symbols, or predicate symbols,

depending on the context in which they are used.

We will use the following notation and conventions. Let AD be the action de-

scription being translated, and Σ be its signature. For every law, w, of AD we de-

note the number of elements in $(w) by |$(w)|. Finally, given a tuple of terms $ =

〈t1, . . . , tn〉, the position of each ti in $ is denoted by pos$(ti).

Every token, y = m(t1, . . . , tn), is mapped by α into an A-Prolog term

m(t′1, . . . , t
′
n) such that, for every t′i:

• if ti is a constant, t′i = ti;

• otherwise (recall that ti is either a constant or a variable), t′i is the A-Prolog

variable Xk, where k = pos$(y)(ti).

Example 4.2.1. Consider static l = ¬g(c1, x, c2, y), where c1,c2 ∈ const(Σ) and x, y

∈ var(Σ). Since its parameter list is {c1, x, c2, y}, pos$(l)(x) = 2 and pos$(l)(y) = 4.

This causes variable x to be mapped into X2 and y into X4. Hence, the mapping of l

is:

¬g(c1, X2, c2, X4).

The mapping is extended to compound actions in the usual way: if

a = {a1, . . . , an} is a compound action, α(a) = {α(a1), . . . , α(an)}.

37

In the rest of this section, tokens and compound actions will be written in bold-

face to denote the terms obtained by mapping them into A-Prolog. For example, if

f is fluent, f denotes α(f).

Let w be a law of AD, m be an arbitrary token that occurs in w, and t1, . . . , t|$(m)|

denote the elements of $(m). We define Γw(m) as the set of A-Prolog atoms:

Γw(m) = {par(j, P, Xi) | 1 ≤ i ≤ |$(m)| ∧ ti ∈ var(Σ) ∧ j = pos$(w)(ti)}

Intuitively, Γw(m) is the A-Prolog encoding of the association between the variables

that occur in m and their position in the parameter list of w; Xi is the A-Prolog

variable corresponding to ti (if ti is a variable), and j is its position in the parameter

list of w.

Example 4.2.2. Let 〈u, x, y, z〉 be the parameter list of law w, and

m = ¬g(x, c1, z, c2) be a static occurring in w, with c1, c2 ∈ const(Σ). The

A-Prolog variables corresponding to x and z are, respectively, X1 and X3. Since

pos$(w)(x) = 2 and pos$(w)(z) = 4, Γw(m) is:

{par(2, P, X1), par(4, P, X3)}.

4.2.1 Translation of the Laws of AL
Let w be a law of AL, w be its name, and η be a mapping from the elements of

body(w) into the integers 1, . . . , |body(w)|, such that every p ∈ body(w) is mapped to

its position in the body of w (according to the order in which the preconditions are

written) 2. The translation of w into A-Prolog, α(w), consists of:

• A fact dlaw(w), slaw(w), or impcond(w), if w is, respectively, a dynamic law,

state constraint, or impossibility condition.

2Actually, any enumeration of the elements of body(w) can be used. This particular mapping was

chosen because it simplifies the presentation.

38

• The encoding of the parameter list of w (by Theorem 4.1.1, $(w) consists only

of variables), consisting of a fact:

parlist(w, pars(X1, . . . , X|$(w)|)).

• For every 1 ≤ i ≤ |$(w)|, a rule:

par(i, pars(X1, . . . , X|$(w)|), Xi).

• If w is either a dynamic law or an impossibility condition: for every elementary

action ae ∈ trigger(w), a rule

action(w,P, ae)← Γw(ae).

• If w is either a dynamic law or a state constraint: a rule

head(w, P, l)← Γw(l).

where l = head(w).

• For every AL-literal, p, from body(w), a rule:

prec(w,P, η(p),p)← Γw(p).

Example 4.2.3. Consider the dynamic law, d1, in normal form:

d1 : {a} causes g(x) if l1(y, z), l2(v),

eq(x, y), eq(z, c1), eq(v, c2).
(4.1)

where c1, c2 are constants, g, li’s are fluent literals, a is an elementary action, and eq

is a static corresponding to the identity relation. The parameter list of d1 is 〈x, y, z, v〉.

39

The translation of d1 consists of the A-Prolog rules:

dlaw(d1).

parlist(d1, pars(X1, . . . , X4)).

par(1, pars(X1, . . . , X4), X1).

par(2, pars(X1, . . . , X4), X2).

par(3, pars(X1, . . . , X4), X3).

par(4, pars(X1, . . . , X4), X4).

action(d1, P, a).

head(d1, P, g(X1))← par(1, P, X1).

prec(d1, P, 1, l1(X1, X2))← par(2, P, X1), par(3, P, X2).

prec(d1, P, 2, l2(X1))← par(4, P, X1).

prec(d1, P, 3, eq(X1, X2))← par(1, P, X1), par(2, P, X2).

prec(d1, P, 4, eq(X1, c1))← par(3, P, X1).

prec(d1, P, 5, eq(X1, c2))← par(4, P, X1).

4.2.2 Translation of Action Descriptions

Let AD = 〈Σ, L, K〉 be an action description of AL. The translation α(L) of L in

A-Prolog is the union of the sets of rules resulting from the translation of each law.

The translation, α(K), of K in A-Prolog is:

K ∪ {is true(r)← r | r is a static}.

Finally, the translation of AD, α(AD), is the set of A-Prolog rules:

α(L) ∪ α(K) ∪ Πprj,

40

where Πprj contains the definition of relations static and fliteral (used to denote

statics and fluent literals), together with:

% if all the preconditions of a state constraint

% are satisfied, the conclusion must hold.

1. h(FL, T)←
slaw(S), parlist(S, P),

head(S, P, FL),

all prec h(S, P, T).

% if all the preconditions of a dynamic law are

% satisfied, the conclusion must hold.

2. h(FL, T + 1)←
dlaw(D), parlist(D, P),

head(D,P, FL),

all prec h(D,P, T),

all actions o(D,P, T).

% the body of an impossibility

% condition must never be satisfied.

3. ← impcond(C),

parlist(C, P),

all prec h(C,P, T),

all actions o(C, P, T).

% all the preconditions of law L, with parameters P ,

% hold at T if they hold starting from the 1st

% precondition.

4. all prec h(L, P, T)←
all prec h(D,P, 1, T).

41

% all the preconditions of law L, with parameters P ,

% are true at T , starting from the N th precondition

5. all prec h(L, P, N, T)←
not has prec(L,N).

%

6. all prec h(L, P, N, T)←
prec h(L, P,N, T),

all prec h(L, P, N + 1, T).

% law L has precondition number N

7. has prec(L,N)←
prec(L, P,N,R).

% a static precondition is true if the corresponding

% static is true.

8. prec h(L, P,N, T)←
static(S), prec(L, P, N, S),

is true(S).

% a fluent precondition is satisfied at T if the

% corresponding fluent literal holds at T .

9. prec h(L, P,N, T)←
fliteral(FL), prec(L, P, N, FL),

h(FL, T).

% the trigger of law L is satisfied at T if all actions occurred.

10. all actions o(D, P, T)← not actions not o(D,P, T).

42

% actions not o(D, P, T): some action did not occur at T .

11. actions not o(D, P, T)←
action(D, P, A),

not o(A, T).

% the inertia axiom: normally, things stay as

% they are.

12. h(FL, T + 1)←
complement(FL,NegFL),

h(FL, T1),

not h(NegFL, T2).

% FL and its complement cannot both hold at T .

13. ← complement(FL, NegFL),

h(FL, T), h(NegFL, T).

% dynamic laws, state constraints and impossibility

% conditions are laws.

14. law(W)← dlaw(W).

15. law(W)← slaw(W).

16. law(W)← impcond(W).

In the following discussion, given a state, σ, a ground compound action, a, and a

non-negative integer, t, h(σ, t) denotes {h(l, t) | l ∈ σ}, and o(a, t) denotes

{o(ae, t) | ae ∈ a}.
Before we discuss the correctness of the encoding, it is useful to establish a link

between the encoding from AL to A-Prolog presented here and the one from [3]. Let

us start by summarizing the relevant notions from [3] (notice that the terminology

was slightly changed to avoid confusion).

The mapping θ, from action descriptions of AL into programs of A-Prolog (corre-

sponding to the α mapping from [3]) is defined for action descriptions satisfying the

43

following restrictions:

• no statics are allowed;

• in dynamic laws and impossibility conditions only singleton compound actions

are allowed.

An action description satisfying the above conditions is called θ-compatible. The

definition of θ for laws from θ-compatible action descriptions is as follows:

1. Each dynamic law is mapped into a collection of atoms:

d law(d), head(d, l0), action(d, ae),

prec(d, 1, l1), . . . , prec(d,m, lm), prec(d,m + 1, nil),

where li’s are its fluent literals and ae its action3, nil is a constant that does

not occur in the action description, and d is the term w(x̄) where w is the name

of the law and x̄ is the list of variables from the action and the fluent literals of

the law.

2. Each state constraint is mapped into a collection of atoms:

s law(d), head(d, l0),

prec(d, 1, l1), . . . , prec(d,m, lm), prec(d,m + 1, nil).

3. Each impossibility condition is mapped into the rule:

← h(l1, T), . . . , h(lm, T),

o(a, T).

Given an action description AD = 〈Σ, L, K〉, by θ(L) we denote the union of the sets

of rules resulting from the translation of each law from L.

Finally, θ(AD) is defined as:

θ(L) ∪ Πθ,

3The variables occurring in the law are suitably mapped into variables of A-Prolog.

44

where Πθ is:

Π

1. h(L, T) ← s law(D),

head(D,L),

prec h(D,T).

2. h(L, T ′) ← d law(D),

head(D,L),

action(D, A),

o(A, T),

prec h(D,T).

3. all h(D,N, T) ← prec(D,N, nil).

4. all h(D,N, T) ← prec(D,N, P),

h(P, T),

all h(D, N ′, T).

5. prec h(D, T) ← all h(D, 1, T).

6. h(L, T ′) ← h(L, T),

not h(L, T ′).

7. ← h(L, T), h(L, T).

Given an action description AD, state σ and compound action a, we denote by

σ′α(AD, σ, a) the collection of maximal sets of fluent literals σ′ such that, for some

answer set A of α(AD) ∪ h(σ, 0) ∪ o(a, 0):

h(σ′, 1) ⊆ A.

Intuitively this is the set of successor states of σ and a under AD according to encoding

α. The set σ′θ(AD, σ, a) is defined similarly.

The following lemma links the α encoding and the θ encoding.

Lemma 4.2.1. For every θ-compatible action description AD, state σ and compound

action a:

σ′ ∈ σ′α(AD, σ, a) iff σ′ ∈ σ′θ(AD, σ, a).

45

Proof. (sketch)

The difference between α(AD) and θ(AD) is purely syntactic. The lemma can be

proven using the Splitting Lemma, following the same approach that we used for

similar comparisons in Appendix D of [3].

3

The applicability of this result can be increased by lifting the requirement that

action descriptions must be θ-compatible.

To do this, we extend θ to allow arbitrary compound actions in dynamic laws and

impossibility conditions. The extension is obtained by allowing sets of action(d, ae)

atoms in the encoding of the laws and by performing trivial changes to Πθ. We call

θ+ the encoding so obtained.

The restriction on the use of statics in the action description is also not difficult

to lift. In fact, since the static knowledge base consists of a collection of statics, it can

be shown that any action description AD with a non-empty static knowledge base

can be mapped into an action description ADθ with an empty static knowledge base

by:

• turning all static predicates into fluent predicates;

• adding to ADθ a state constraint:

r(t1, . . . , tn) caused

for each static that is true in the static knowledge base of AD. Notice the empty

body of the law.

Let us denote the result of applying the above mapping to an arbitrary action de-

scription AD by k(AD). Using encoding θ+ and the above mapping, the previous

lemma can be generalized as follows.

Lemma 4.2.2. For every action description AD, state σ and compound action a:

σ′ ∈ σ′α(AD, σ, a) iff σ′ ∈ σ′θ+(k(AD), σ, a).

46

Proof. The proof of the statement is similar to that of Lemma 4.2.1.

3

Intuitively, this lemma shows that the existing theoretical results for encodings

similar to θ apply also to the encoding used in this dissertation.

The following theorem establishes the correctness of the α encoding with respect

to the semantics of AL.

Theorem 4.2.1. For every action description, AD, 〈σ, a, σ′〉 is a state transition in

trans(AD) iff there exists some answer set, A, of

α(AD) ∪ h(σ, 0) ∪ o(a, 0)

such that h(σ′, 1) ⊆ A.

Proof. Follows from Lemma 4.2.2 and the similar results from Section D.1 of [3].

3

Finally, the next theorem proves that the encoding into A-Prolog can be also used

to compute paths in the transition diagram.

Theorem 4.2.2. For every action description, AD, π = 〈σ0, a0, . . . , σn〉 is a path in

trans(AD) iff there exists some answer set, A, of

α(AD) ∪ h(σ0, 0) ∪ o(a0, 0) ∪ o(a1, 1) ∪ . . . ∪ o(an−1, n− 1)

such that, for every 1 ≤ i ≤ n, h(σi, i) ⊆ A.

Proof. Follows from Lemma 4.2.2 and the similar results from Section D.1 of [3].

3

4.3 Encoding of Domain Descriptions

In this section, we extend mapping α to domain descriptions of AL. Let D =

〈AD,HcT 〉 be a domain description. Its mapping into A-Prolog is defined as:

α(〈AD, HcT 〉) = α(AD) ∪HcT ∪ Πra

47

where Πra consists of the following Reality Axioms :

% If a fluent literal is observed to be true at the initial step, it is

% true in the initial state of every model of D.

h(L, 0)← obs(L, 0).

% If an action, A, was observed at step T , A occurs at T in

% every model of D.

o(A, T)← hpd(A, T).

% It is impossible for a state of a model of D not to match the

% observations.

← obs(L, T), not h(L, T).

The next theorem proves the correctness of the encoding of domain descriptions.

Theorem 4.3.1. For every domain description, D = 〈AD,HcT 〉, such that the ini-

tial situation of HcT is complete (i.e. for any fluent f of AD, HcT contains either

obs(f, 0) or obs(¬f, 0)), M is a model of HcT iff there exists some answer set, A, of

α(D) such that, for every 0 ≤ s ≤ cT :

σ(π, s) = {l | h(l, s) ∈ A}, and

act(π, s) = {a | o(a, s) ∈ A}.

Proof. The statement follows from Lemma 4.2.2 above and Theorem 1 from [3].

3

(The theorem is similar to the result from [77] which deals with a different language

and uses the definitions from [50].)

The next theorem links consistency of recorded histories with the consistency of

α(D).

48

Theorem 4.3.2. For every domain description, D = 〈AD, HcT 〉, HcT is consistent

iff α(D) is consistent.

Proof. The conclusion follows from the application of Lemma 4.2.2, followed by

Corollary 1 from [3].

3

4.4 Computing the Entailment Relation

Given a domain description, D = 〈AD, HcT 〉, checking whether HcT entails a

query can be reduced to membership check on the answer sets of α(D).

Proposition 4.4.1. For every domain description, D = 〈AD,HcT 〉 and step 0 ≤
s ≤ cT , HcT entails h(l, s) iff h(l, s) belongs to all the answer sets of α(D).

Proposition 4.4.2. For every domain description, D = 〈AD,HcT 〉, HcT entails

h after(l, 〈a1, . . . , ak〉) iff h(l, cT + k + 1) belongs to all the answer sets of α(D) ∪
{o(a, cT + i) | a ∈ ai}.

The proofs of these propositions can be derived from Proposition 13.6.1 of [9].

49

CHAPTER V

SUFFICIENT CONDITIONS FOR DETERMINISM OF ACTION

DESCRIPTIONS

It is often important to know whether an action description is deterministic. In

this chapter, we introduce a sufficient condition for the determinism of action

descriptions that can be efficiently checked (the necessary and sufficient condition

was shown to be coNP-hard in [78]), and show how the condition can be verified

using A-Prolog.

5.1 Definition of the Condition

In the following definitions, we focus on ground action descriptions not containing

statics. (Non-ground action descriptions are viewed as abbreviations of their ground

instances. Ground action descriptions containing statics can be simplified into static-

free ones by removing the laws whose statics do not hold, and by removing the

remaining statics from the other laws.)

Definition 5.1.1 (Dependency Graph). The dependency graph, depC(AD), of

action description AD with respect to a consistent set of ground fluent literals C, is a

directed graph whose nodes correspond to the ground fluent literals from the signature

of AD, and whose arcs, labeled by elements of {1, +}, are defined as follows:

• for every ground instance, w, of a state constraint (2.6) such that body(w) is a

singleton {l}, depC(AD) contains a 1-arc 〈head(w), 1, l〉;

• for every ground instance, w, of a state constraint (2.6) such that |body(w)| > 1,

and for every li ∈ body(w) such that body(w) \ {li} ⊆ C, depC(AD) contains a

+-arc 〈head(w), +, li〉.

50

Example 5.1.1. Consider action description:

q if ¬r, s.

q if p.

a causes p.

Its dependency graph w.r.t. {¬r, s, p} is: (here and in the rest of the chapter we omit

nodes that have no arcs associated to them)

−r

p

q

+

1

+
s

Now consider action description:

q if ¬r, p.

r if ¬q, p.

a causes p.

Its dependency graph w.r.t. {q,¬q, r,¬r, p} is:

p

+

+

+

+
q −r

−qr

while its dependency graph w.r.t. {p,¬r} is:

p

+

+
q −r

51

Definition 5.1.2 (Dependency Path). A dependency path w.r.t. C in the depen-

dency graph, depC(AD), is a sequence

π = 〈l1, t1, l2, t2, . . . , tk−1, lk〉

such that k > 1, and for every 1 ≤ i < k, depC(AD) contains an arc 〈li, ti, li+1〉.

Example 5.1.2. Consider again the following action description

q if ¬r, p.

r if ¬q, p.

a causes p.

and its dependency graph w.r.t. {q,¬q, r,¬r, p},

p

+

+

+

+
q −r

−qr

Dependency paths in this dependency graph are, for example, 〈q,¬r〉, 〈r,¬q〉, 〈r, p〉.
On the other hand, 〈r, p,¬q〉 is not a dependency path because there is no arc from

¬q to p.

Given a dependency path π in depC(AD), we denote its first node by πs and its

last node by πe. Also, |π| (the cardinality of π) denotes the number of nodes in π.

We say that a dependency path, π, contains a 1-arc (respectively, +-arc) if, for

some 1 ≤ i < |π|, 〈li, 1, li+1〉 belongs to π (respectively, 〈li, +, li+1〉 belongs π). Paths

that contain at least a +-arc are called conditional.

To simplify notation, we will omit the arc labels from arcs and paths when possible

(e.g. we denote a path by 〈l1, l2, . . . , lk〉).
To prove the main theorems of this chapter, we will need the following definitions.

52

Definition 5.1.3 (Neg-Seq). A dependency sequence through negation (in short,

neg-seq) in depC(AD) is a non-empty sequence, ν = 〈π1, . . . , πk〉, of dependency paths

from depC(AD) such that, for every 1 ≤ i < k:

πs
i+1 = πe

i .

(πe
i denotes the complement of πe

i .)

If, for every 1 ≤ i ≤ k, πi is conditional, then we say that ν is a conditional

neg-seq.

Given a neg-seq, ν, in depC(AD), we say that depC(AD) contains ν.

Example 5.1.3. In the dependency graph of Example 5.1.2, a neg-seq is

〈〈q,¬r〉, 〈r,¬q〉〉.

Definition 5.1.4 (Neg-Loop). A dependency loop through negation (or neg-loop)

is a neg-seq, ν = 〈π1, . . . , πk〉, such that πs
1 = πe

k.

If every πi is conditional, then we say that ν is a conditional neg-loop.

Example 5.1.4. The neg-seq shown in Example 5.1.3, 〈〈q,¬r〉, 〈r,¬q〉〉, is also a

neg-loop.

Definition 5.1.5 (Safe Dependency Graph). A dependency graph, depC(AD), is

safe if it does not contain any conditional neg-loop.

Example 5.1.5. The dependency graph of Example 5.1.2 is not safe, as it contains

a neg-loop.

The following proposition extends results from [8, 9].

Proposition 5.1.1. Given an arbitrary action description, AD, if, for every set of

ground fluent literals, C, from the signature of AD, depC(AD) is safe, then AD is

deterministic.

53

The proof of the proposition is similar to that of Theorem 5.1.1 below.

For practical applications, testing that depC(AD) is safe for every C may be too

complex. In this case, it may be useful to have a stronger condition, based on a

notion of dependency graph that does not depend on a particular set of ground fluent

literals.

Definition 5.1.6 (Simplified Dependency Graph). The simplified dependency

graph, dep(AD), of an action description, AD, is a directed graph whose nodes are the

ground fluent literals from the signature of AD, and whose arcs, labeled by elements

of {1, +}, are defined as follows:

• for every ground instance, w, of a state constraint (2.6) such that body(w) is a

singleton {l}, dep(AD) contains a 1-arc 〈head(w), 1, l〉;

• for every ground instance, w, of a state constraint (2.6) such that |body(w)| > 1,

and for every li ∈ body(w), dep(AD) contains a +-arc 〈head(w), +, li〉.

Example 5.1.6. Consider again the action description from Example 5.1.1:

q if ¬r, p.

r if ¬q, p.

a causes p.

Its simplified dependency graph is:

p

+

+

+

+
q −r

−qr

We extend the notions of dependency path, neg-seq, and neg-loop to simplified

dependency graphs. Notice that the main difference between the definitions of

depC(AD) and dep(AD) is in the fact that dep(AD) does not depend on a set of

fluent literals. Similarly to what we did for dependency graphs, we define the notion

of safe simplified dependency graph.

54

Definition 5.1.7 (Safe Simplified Dependency Graph). A simplified dependency

graph, dep(AD), is safe if it does not contain any conditional neg-loop.

Lemma 5.1.1. Let AD be an arbitrary non-deterministic action description, and

〈σ0, a, σ1〉, 〈σ0, a, σ2〉 be two transitions from trans(AD) such that σ1 6= σ2.

For every fluent literal l ∈ σ1 \ σ2 such that l 6∈ σ0, there exists an arc 〈l, l′〉 in

dep(AD) such that l′ ∈ σ1 \ σ2.

Proof. Notice that l 6∈ E(a, σ0). In fact, E(a, σ0) ⊆ σ2 by Equation 2.8, and l 6∈ σ2

by hypothesis.

Moreover, from l 6∈ σ0, it follows that l 6∈ σ1 ∩ σ0.

Hence, there exists some state constraint, w, such that:

• l = head(w);

• body(w) ⊆ σ1;

• body(w) 6⊆ σ2.

By Definition 5.1.6, for every l′ ∈ body(w), there exists 〈l, l′〉 in dep(AD). Since

body(w) ⊆ σ1 and body(w) 6⊆ σ2, l′ 6∈ σ2 for some l′ ∈ body(w).

3

Definition 5.1.8 (S-contained path). Given a set, S, of fluent literals, a depen-

dency path 〈l1, l2, . . . , lk〉 in dep(AD) is an S-contained path if, for every 1 ≤ i ≤ k,

li ∈ S.

Definition 5.1.9 (S-support of l). Given a set, S, of fluent literals, and a fluent

literal, l, the S-support of l (in short, CS
l) is the set of all fluent literals that occur in

at least one S-contained path starting from l.

Lemma 5.1.2. Let AD be an arbitrary non-deterministic action description, and

〈σ0, a, σ1〉, 〈σ0, a, σ2〉 be two transitions from trans(AD) such that σ1 6= σ2.

For every l ∈ σ1 \ σ2 such that l 6∈ σ0, there exists a (σ1\σ2)-contained path in

dep(AD) that starts from l.

55

Proof. Lemma 5.1.1 guarantees the existence of an arc 〈l, l′〉 ∈ dep(AD) such that

l′ ∈ σ1 \ σ2.

By Definition 5.1.8, 〈l, l′〉 is a (σ1\σ2)-contained path.

3

Lemma 5.1.3. Let AD be an arbitrary non-deterministic action description. For

every pair of transitions 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 from trans(AD) such that σ1 6= σ2 and

for every l ∈ σ1 \ σ2, the set σ1 \ C
σ1\σ2

l is closed under the state constraints of AD.

Proof. Let δ = σ1 \ C
σ1\σ2

l . Proving the claim by contradiction, let us assume that

there exists a state constraint,

caused g if g1, . . . , gh

such that {g1, . . . , gh} ⊆ δ but g 6∈ δ.

Obviously, g ∈ σ1. Since g 6∈ δ, g ∈ C
σ1\σ2

l . By Definition 5.1.9, there exists a

(σ1\σ2)-contained path 〈l, . . . , g〉 in dep(AD). By Definition 5.1.6, for every 1 ≤ i ≤ h,

〈l, . . . , g, gi〉 is a dependency path.

Notice that there exists g′ ∈ {g1, . . . , gh} such that g′ 6∈ σ2. (Otherwise, it would

follow that g ∈ σ2, which contradicts g ∈ C
σ1\σ2

l .) Hence, g′ ∈ σ1 \ σ2. By Definition

5.1.8 〈l, . . . , g, g′〉 is (σ1 \σ2)-contained. By Definition 5.1.9, g′ ∈ C
σ1\σ2

l . Hence,

g′ 6∈ δ, which contradicts the assumption that {g1, . . . , gh} ⊆ δ.

3

Lemma 5.1.4. Let AD be an arbitrary non-deterministic action description. For

every pair of transitions 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 from trans(AD) such that σ1 6= σ2,

and for every l ∈ σ1 \ σ2 such that l 6∈ σ0, there exists a (σ1 \σ2)-contained path,

〈l, l1, . . . , lk〉, such that lk ∈ σ0.

Proof. Proving by contradiction, assume that, for every (σ1 \ σ2)-contained path

〈l, l1, . . . , lk〉, li 6∈ σ0 for every li.

Let δ = σ1 \ C
σ1\σ2

l . Since the existence of a (σ1\σ2)-contained path starting from

l is guaranteed by Lemma 5.1.2, C
σ1\σ2

l is not empty. Hence, σ1 ⊃ δ.

56

From E(a, σ0) ⊆ σ1 ∩ σ2 and C
σ1\σ2

l ⊆ σ1 \ σ2, it follows that δ contains E(a, σ0).

The assumption that li 6∈ σ0 for every li, implies that C
σ1\σ2

l ∩ σ0 = ∅. Therefore, δ

also contains σ1 ∩ σ0.

Summing up, δ ⊇ E(a, σ0) ∪ (σ1 ∩ σ0), and, by Lemma 5.1.3, δ is closed under

the state constraints of AD. Therefore, δ ⊇ CnZ(E(a, σ0)∪ (σ1 ∩ σ0)). Since σ1 ⊃ δ,

σ1 6= CnZ(E(a, σ0) ∪ (σ1 ∩ σ0)). Contradiction.

3

Lemma 5.1.5. Let AD be an arbitrary non-deterministic action description, and

〈σ0, a, σ1〉, 〈σ0, a, σ2〉 be two transitions from trans(AD) such that σ1 6= σ2.

For every fluent literal l ∈ σ1 \ σ2 such that l 6∈ σ0, there exists a conditional

dependency path π in dep(AD) such that:

πs = l ∧ πe ∈ σ1 \ σ2 ∧ πe ∈ σ0. (5.1)

Proof. The existence of π satisfying (5.1) follows directly from the application of

Lemma 5.1.4.

We prove that π is conditional by contradiction. Let us assume that π is not

conditional (i.e. contains only 1-arcs), and let li denote the ith node of π (hence,

l = l1). Since 〈li, li+1〉 is a 1-arc, for every state σ, if li+1 ∈ σ, then li ∈ σ. Because

σ0 is a state, and πe ∈ σ0, l|π|−1 ∈ σ0. It is not difficult to prove by induction that

l1 ∈ σ0. Since l = l1, l ∈ σ0. But l 6∈ σ0 by hypothesis. Contradiction.

3

Lemma 5.1.6. Let AD be an arbitrary non-deterministic action description, and

〈σ0, a, σ1〉, 〈σ0, a, σ2〉 be two transitions from trans(AD) such that σ1 6= σ2.

For every fluent literal l ∈ σ1 \ σ2 such that l 6∈ σ0, and for every positive integer

k, there exists a conditional neg-seq, 〈π1, . . . , πk〉, such that πs
1 = l.

Proof. By induction on k.

Base case: k = 1. The conclusion follows directly from Lemma 5.1.5.

57

Inductive Step: let us assume that the theorem holds for k, and let us prove that

it holds for k + 1.

By Lemma 5.1.5, there exists a conditional path, π1, such that πs
1 = l, πe

1 ∈ σ1\σ2,

and πe
1 ∈ σ0.

Because πe
1 ∈ σ1 \ σ2, πe

1 ∈ σ2 \ σ1; also, from πe
1 ∈ σ0, it follows that πe

1 6∈ σ0.

By inductive hypothesis, there exists a conditional neg-seq, 〈π2, . . . , πk+1〉, of length

k, such that πs
2 = πe

1.

By Definition 5.1.3, 〈π1, π2, . . . , πk+1〉 is a conditional neg-seq. Since its length is

k + 1, and πs
1 = l, the proof is complete.

3

Lemma 5.1.7. For every action description AD, and for every state σ0 and action

a such that a is executable in σ0, if E(a, σ0) ⊆ σ0, then σ0 is the only successor state

of σ0 under a.

Proof. Consider an arbitrary 〈σ0, a, σ1〉 ∈ trans(AD), and let us prove that, under

the hypotheses, σ1 = σ0.

Recall that, by Equation 2.8, σ1 = CnZ(E(a, σ0)∪ (σ1∩σ0)). Obviously, σ1∩σ0 ⊆
σ0. As E(a, σ0) ⊆ σ0 by hypothesis, E(a, σ0) ∪ (σ1 ∩ σ0) ⊆ σ0.

Since σ0 is a state, from Definition 2.3.5 it follows that, for every X ⊆ σ0,

CnZ(X) ⊆ σ0. Hence, CnZ(E(a, σ0) ∪ (σ1 ∩ σ0)) ⊆ σ0, which implies that σ1 ⊆ σ0.

Since σ0, σ1 are states, σ1 = σ0.

3

Corollary 5.1.1. For every action description, AD, and for every state σ0 and action

a such that a is executable in σ0, if a transition 〈σ0, a, σ0〉 belongs to trans(AD), then

σ0 is the only successor state of σ0 under a.

Proof. By Equation 2.8, E(a, σ0) ⊆ σ0. The application of Lemma 5.1.7 concludes

the proof.

3

58

Corollary 5.1.2. Let AD be an arbitrary non-deterministic action description. For

every pair of transitions 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 from trans(AD) such that σ1 6=σ2,

σ1 6= σ0 and σ2 6= σ0.

Proof. By contradiction. If σ1 = σ0, then, by Corollary 5.1.1, σ2 = σ0. Hence,

σ1 = σ2. Contradiction.

3

Theorem 5.1.1. For every action description, AD, if dep(AD) is safe, then AD is

deterministic.

Proof. We prove the theorem by proving the contrapositive of the claim:

For every action description AD, if AD is non-deterministic, then dep(AD) is

not safe.

Since AD is non-deterministic, there exist two transitions,

〈σ0, a, σ1〉 ∈ trans(AD) and 〈σ0, a, σ2〉 ∈ trans(AD), such that σ1 6= σ2. By

Corollary 5.1.2, there exists l ∈ σ1 \ σ2 such that l 6∈ σ0.

Let n denote the number of ground fluent literals from the signature of AD, and

k′ be some positive integer such that k′ > n. Lemma 5.1.6 guarantees the existence

of a neg-seq, 〈π1, . . . , πk′〉, such that πs
1 = l.

Since k′ > n, there exist 1 ≤ i < j ≤ k′ such that πs
i = πs

j . By Definition 5.1.3,

πs
j = πe

j−1. By Definition 5.1.4, 〈πi, πi+1, . . . , πj−1〉 is a conditional neg-loop.

This proves that dep(AD) contains a conditional neg-loop. Therefore, by Defini-

tion 5.1.7, dep(AD) is not safe.

3

Example 5.1.7. The action description:

caused q if ¬r, p

caused r if ¬q, p
a causes p

59

is non-deterministic. In fact, there are two successor states for the execution of action

a in state {¬p,¬q,¬r}:
{p,¬q, r} and {p, q,¬r}.

Notice that the simplified dependency graph is not safe, as it contains the condi-

tional neg-loop:

〈〈q,¬r〉, 〈r,¬q〉〉.

Example 5.1.8. The action description:

caused q if ¬q, p
a causes p

is deterministic, and its simplified dependency graph is safe, as there are no arcs out

of nodes ¬q and p.

Example 5.1.9. The action description:

caused q if r, p

caused r if q, p

a causes p

is deterministic, and its simplified dependency graph is safe, as it does not contain

nodes ¬q and ¬r.

Example 5.1.10. The action description:

caused q if r, p

caused q if ¬r, p

a causes p

is deterministic, and its simplified dependency graph is safe, as there are no arcs out

of nodes r and ¬r.

It is important to stress that the condition for determinism of action descriptions

is only sufficient, as shown by the following example.

60

Example 5.1.11. The action description:

caused q if ¬r, p

caused r if ¬q, p
a causes ¬p

is deterministic. In fact, the execution of action a in any state has the only effect of

making p false, if it not already false.

However, the simplified dependency graph is not safe, as it contains the conditional

neg-loop:

〈〈q,¬r〉, 〈r,¬q〉〉.

The next example shows that the condition based on dependency graphs is in

some cases more accurate than the one based on simplified dependency graphs.

Example 5.1.12. The action description:

caused q if ¬r,¬p
caused r if ¬q, p

a causes p

is deterministic.

The simplified dependency graph is not safe, as it contains the conditional neg-

loop:

〈〈q,¬r〉, 〈r,¬q〉〉.
On the other hand, for every consistent set of ground fluent literals, the depen-

dency graph of the action description is safe.

Finally, the next two examples show that the length of the neg-loop influences the

determinism of action descriptions.

Example 5.1.13. The action description:

caused q if ¬r,¬p

caused r if s, p

caused s if ¬q,¬p

a causes p

61

is non-deterministic, and its simplified dependency graph is not safe.

Example 5.1.14. The action description:

caused q if ¬r,¬p

caused r if ¬s, p
caused s if ¬q,¬p

a causes p

is deterministic, but its simplified dependency graph is not safe.

Although taking into account this parameter in the sufficient conditions is in

principle possible, it is beyond the scope of this dissertation.

The next proposition illustrates the relationship between the two conditions.

Proposition 5.1.2. For every action description, AD, if dep(AD) is safe, then

depC(AD) is safe for every set of ground fluent literals, C. from the signature of

AD.

In the rest of this dissertation, we will use the term dependency graph to denote

both dependency graphs with respect to a set of group literals and simplified depen-

dency graphs, as long as it is clear from the context to which definition we are refer-

ring.

5.2 Checking for Determinism with A-Prolog

In the previous section we have stated sufficient conditions for the determinism of

action descriptions. Here we show how A-Prolog can be used to check the condition

corresponding to Theorem 5.1.1.

Definition 5.2.1 (A-Prolog Encoding of dep(AD)). The A-Prolog encoding,

dep∗(AD), of a dependency graph dep(AD) is defined as:

dep∗(AD) = {arc(x1, x2) | 〈x1, x2〉 ∈ dep(AD)} ∪
{plus arc(x1, x2) | 〈x1, +, x2〉 ∈ dep(AD)}

62

Definition 5.2.2 (Conditional Neg-Seq Generator). The Conditional Neg-Seq

Generator, cnsgen(AD), for an action description AD consists of the union of

dep∗(AD) with the rules:

%% path(L1,L2): there is a path between L1 and L2

%%

path(L1, L2)← arc(L1, L2).

path(L1, L2)← arc(L1, L3), path(L3, L2).

%% cond path(L1,L2): there is a conditional path between L1 and L2

%%

cond path(L1, L2)← plus arc(L1, L2).

cond path(L1, L2)← plus arc(L1, L3), path(L3, L2).

cond path(L1, L2)← arc(L1, L3), cond path(L3, L2).

%% cond neg seq(L1,L2): there is a conditional neg-seq between L1 and L2

%%

cond neg seq(L1, L2)← cond path(L1, L2).

cond neg seq(L1, L2)← cond path(L1, L3), cond neg seq(L3, L2).

(As usual, L3 denotes the complement of fluent literal L3.)

Definition 5.2.3 (Safety Tester). The Safety Tester, safe(AD), for an action

description AD is defined as:

safe(AD) = cnsgen(AD) ∪ {← cond neg seq(L,L).}.

To prove the correctness of the results produced by safe(AD), we need the fol-

lowing definitions and lemmas.

Lemma 5.2.1. For every action description, AD, cnsgen(AD) has at most one

answer set.

Proof. Straightforward, since cnsgen(AD) contains neither default negation nor dis-

junction.

63

3

When an A-Prolog program, Π, has a unique answer set, we denote it by ans(Π).

Lemma 5.2.2. For every action description, AD, if 〈l1, . . . , lk〉 ∈ dep(AD), then

path(l1, lk) ∈ ans(cnsgen(AD)).

Proof. By induction on the number of nodes in the path.

Base case: k = 2. If 〈l1, l2〉 ∈ dep(AD), then, by Definition 5.2.1, a fact

arc(l1, l2) occurs in dep∗(AD). Since ans(cnsgen(AD)) is closed under the rules of

cnsgen(AD), arc(l1, l2) ∈ ans(cnsgen(AD)).

Inductive step: assume the theorem holds for k, and prove it for k + 1.

By Definition 5.1.2, 〈l1, l2〉 ∈ dep(AD) and 〈l2, . . . , lk〉 ∈ dep(AD). By

Definition 5.2.1, arc(l1, l2) ∈ dep∗(AD). By inductive hypothesis,

path(l2, lk) ∈ ans(cnsgen(AD)). By closure of ans(cnsgen(AD)) under the laws of

cnsgen(AD), path(l1, lk) ∈ ans(cnsgen(AD)).

3

Lemma 5.2.3. For every action description, AD, if 〈l1, . . . , lk〉 ∈ dep(AD) is condi-

tional, then cond path(l1, lk) ∈ ans(cnsgen(AD)).

Proof. By induction on the number of nodes in the path.

Base case: k = 2. If 〈l1, l2〉 ∈ dep(AD) is conditional, then, by Definition 5.2.1, a

fact plus arc(l1, l2) occurs in dep∗(AD). Since ans(cnsgen(AD)) is closed under the

rules of cnsgen(AD), arc(l1, l2) ∈ ans(cnsgen(AD)).

Inductive step: assume the theorem holds for k, and prove it for k + 1.

By Definition 5.1.2, 〈l1, l2〉 ∈ dep(AD) and 〈l2, . . . , lk〉 ∈ dep(AD). Since

〈l1, . . . , lk〉 is conditional, either 〈l1, l2〉 is conditional, or 〈l2, . . . , lk〉 is conditional.

In the first case, by Definition 5.2.1, plus arc(l1, l2) ∈ dep∗(AD). By Lemma

5.2.2, path(l2, lk) ∈ ans(cnsgen(AD)). By closure of ans(cnsgen(AD)) under the

laws of cnsgen(AD), cond path(l1, lk) ∈ ans(cnsgen(AD)).

64

In the second case, by Definition 5.2.1, arc(l1, l2) ∈ dep∗(AD). By inductive

hypothesis, cond path(l2, lk) ∈ ans(cnsgen(AD)). By closure of ans(cnsgen(AD))

under the laws of cnsgen(AD), path(l1, lk) ∈ ans(cnsgen(AD)).

3

Lemma 5.2.4. For every action description, AD, if dep(AD) contains a conditional

neg-seq 〈π1, . . . , πk〉, then cond neg seq(πs
1, π

e
k) ∈ ans(cnsgen(AD)).

Proof. By induction on the number of nodes in the path.

Base case: k = 1. By Definition 5.1.3, π1 is conditional. By Lemma 5.2.3,

cond path(πs
1, π

e
1) ∈ ans(cnsgen(AD)). Since ans(cnsgen(AD)) is closed under the

rules of cnsgen(AD), cond neg seq(l1, l2) ∈ ans(cnsgen(AD)).

Inductive step: assume the theorem holds for k, and prove it for k + 1.

By Definition 5.1.3, all πi’s are conditional paths. By Lemma 5.2.3,

cond path(πs
1, π

e
1) ∈ ans(cnsgen(AD)). By the inductive hypothesis,

cond neg seq(πs
2, π

e
k) ∈ ans(cnsgen(AD)). Notice that, by Definition 5.1.3, πs

2 = πe
1.

Hence, by closure of ans(cnsgen(AD)) under the rules of cnsgen(AD),

cond neg seq(l1, lk) ∈ ans(cnsgen(AD)).

3

Definition 5.2.4 (Recursive Definition). Given an arbitrary relation r, a recur-

sive definition of r is the set of rules:

r(X)← Γ1(X).

r(X)← Γ2(X).

. . .

r(X)← Γn(X).

r(X1)← Γ′(X1, X2), r(X2).

where Γi(X)’s and Γ′(X1, X2) are conjunctions of literals (possibly preceded by default

negation).

65

In the discussion that follows, we say that a conjunction of literals (possibly pre-

ceded by default negation) Γ is satisfied by a set of literals M (written M ² Γ) if

every literal from Γ that is out of the scope of default negation, belongs to M , and

every literal from Γ that is in the scope of default negation, does not belong to M .

Lemma 5.2.5. For every relation r, every A-Prolog program Π containing a recursive

definition of r, and every set P of ground terms from the signature of Π, if there exists

an answer set, M , of Π such that:

1. for every x and Γi, if M ² Γi(x), then x ∈ P ;

2. for every x1,x2, if M ² Γ′(x1, x2) and x2 ∈ P , then x1 ∈ P ;

then, for every x such that r(x) ∈M , x belongs to P .

Proof. Notice that, by the Marek-Subrahmanian Lemma, r(x1) ∈ M implies one of

the following:

• M ² Γi(x1) for some 1 ≤ i ≤ n; or

• there exists x2 such that M ² Γ′(x1, x2) and r(x2) ∈M .

If M ² Γi(x1), then the conclusion follows from hypothesis (1).

Hence, let us consider the case in which M ² Γ′(x1, x2) and r(x2) ∈ M . Again,

we can apply the Marek-Subramanian Lemma to r(x2). This proves that there exists

a sequence, s = 〈x1, x2, . . . , xk〉 such that:

• for every 1 ≤ i < k, Γ′(xi, xi+1) ∈M ;

• for every 1 ≤ i ≤ k, r(xi) ∈M .

Notice that, for some xj, there exists Γi such that M ² Γi(xj). (Otherwise, the ele-

ments of all the sequences starting from x1 can be removed from M , and the resulting

set, M ′ ⊂M , is closed under the rules of ΠM , which causes contradiction).

Hence, xj ∈ P by hypothesis (1). From hypothesis (2) and by construction of s,

xj−1 ∈ P . It is not difficult to prove by induction that x1 ∈ P .

66

3

The previous lemma can be seen as a form of induction on the recursive definition

of relation r. In the rest of this dissertation, we will denote the application of the

lemma to some relation r by the words “By induction on the (recursive) definition of

relation r.”

Lemma 5.2.6. For every action description, AD, if path(l1, l2) ∈ ans(cnsgen(AD)),

then there exists π in dep(AD) such that πs = l1 and πe = l2.

Proof. By induction on the definition of path in cnsgen(AD).

Base case: we need to prove that

arc(l1, l2) ∈ ans(cnsgen(AD))→ ∃ π ∈ dep(AD) s.t. πs = l1 ∧ πe = l2.

Notice that ans(cnsgen(AD)) ⊇ dep∗(AD). By Definition 5.2.1,

arc(l1, l2) ∈ dep∗(AD) iff 〈l1, l2〉 ∈ dep(AD).

Inductive step: assume arc(l1, l3) ∈ ans(cnsgen(AD)) and 〈l3, . . . , l2〉 ∈ dep(AD),

and prove 〈l1, . . . , l2〉 ∈ dep(AD).

As before, arc(l1, l3) ∈ ans(cnsgen(AD)) implies 〈l1, l3〉 ∈ dep(AD). By Defini-

tion 5.1.2, 〈l1, l3, . . . , l2〉 ∈ dep(AD).

3

Lemma 5.2.7. For every action description, AD, if

cond path(l1, l2) ∈ ans(cnsgen(AD)), then there exists π in dep(AD) such that

πs = l1, πe = l2 and π is conditional. .

Proof. By induction on the definition of cond path in cnsgen(AD).

Base case: we need to prove that:

plus arc (l1, l2) ∈ ans(cnsgen(AD))→
∃ π ∈ dep(AD) s.t. πs = l1 ∧ πe = l2 ∧ π is conditional,

(5.2)

67

and:

{plus arc (l1, l2), path(l3, l2)} ⊆ ans(cnsgen(AD))→
∃ π ∈ dep(AD) s.t. πs = l1 ∧ πe = l2 ∧ π is conditional.

(5.3)

To prove claim (5.2), notice that ans(cnsgen(AD)) ⊇ dep∗(AD). By Definition 5.2.1,

plus arc(l1, l2) ∈ dep∗(AD) iff 〈l1, +, l2〉 ∈ dep(AD).

Claim (5.3) is proven as follows. As before, plus arc(l1, l3) ∈ dep∗(AD) iff

〈l1, +, l3〉 ∈ dep(AD). By Lemma 5.2.6, path(l3, l2) ∈ ans(cnsgen(AD)) implies that

〈l3, . . . , l2〉 ∈ dep(AD). Hence, 〈l1, l3, . . . , l2〉 ∈ dep(AD) is conditional.

Inductive step: assume arc(l1, l3) ∈ ans(cnsgen(AD)) and 〈l3, . . . , l2〉 ∈ dep(AD)

is conditional, and prove 〈l1, . . . , l2〉 ∈ dep(AD) is conditional.

As before, arc(l1, l3) ∈ ans(cnsgen(AD)) implies 〈l1, l3〉 ∈ dep(AD). By Defini-

tion 5.1.2, 〈l1, l3, . . . , l2〉 ∈ dep(AD) is conditional.

3

Lemma 5.2.8. For every action description, AD, if

cond neg seq(l1, l2) ∈ ans(cnsgen(AD)), then dep(AD) contains a conditional

neg-seq 〈π1, . . . , π2〉 such that πs
1 = l1 and πe

2 = l2. .

Proof. By induction on the definition of cond neg seq in cnsgen(AD).

Base case: we need to prove:

cond path (l1, l2) ∈ ans(cnsgen(AD))→
∃ 〈π1, . . . , π2〉 ∈ dep(AD) s.t. πs

1 = l1 ∧ πe
2 = l2

and ∀ i, πi is conditional.

If cond path(l1, l2) ∈ ans(cnsgen(AD)), then by Lemma 5.2.7 there exists

π ∈ dep(AD) such that πs = l1, πe = l2 and π is conditional. Since 〈π〉 is a

conditional neg-seq, the claim is proven.

Inductive step: assume cond path(l1, l3) ∈ ans(cnsgen(AD)) and dep(AD) con-

tains a conditional neg-seq 〈π3, . . . , π2〉 ∈ dep(AD) such that πs
3 = l3, πe

2 = l2, and

prove the existence of a conditional neg-seq 〈π1, . . . , π2〉 in dep(AD) such that πs
1 = l1

and πs
2 = l2.

68

As in the base case, from cond path(l1, l3) ∈ ans(cnsgen(AD)) and Lemma 5.2.7

it follows that 〈π1〉 is a conditional neg-seq in dep(AD) such that πs
1 = l1 and πe

1 = l3.

By the inductive hypothesis and Definition 5.1.3, 〈π1, π3, . . . , π2〉 is a conditional neg-

seq in dep(AD) such that πs
1 = l1 and πe

2 = l2.

3

We can now state the main theorem of this section.

Theorem 5.2.1. For every action description, AD, dep(AD) is safe iff safe(AD)

is consistent.

Proof.

Left-to-Right: by Definition 5.1.7, dep(AD) does not contain any conditional neg-

loop, i.e. any conditional neg-seq from l to l. By Lemma 5.2.8, cond neg seq(l, l)

does not belong to ans(cnsgen(AD)). Hence, the body of the constraint in safe(AD)

is never satisfied.

Right-to-Left: by the Marek-Subramanian Lemma, there exists no l such that

cond neg seq(l, l) is in ans(safe(AD)). By Lemma 5.2.4, no conditional neg-seq

from l to l is in dep(AD). By Definition 5.1.4, dep(AD) does not contain any

conditional neg-loop. Hence, dep(AD) is safe.

3

The following corollary states the computational complexity of checking the con-

dition.

Corollary 5.2.1. For every action description, AD, checking whether dep(AD) is

safe is a problem of polynomial complexity.

Proof. From Theorem 5.2.1, we know that the test can be reduced to checking the

consistency of safe(AD), which in turn corresponds to checking whether all the an-

swer sets of cnsgen(AD) satisfy the constraint {← cond neg seq(L,L)}. Notice that

69

cnsgen(AD) is stratified. Hence, its unique answer set coincides [1] with the well-

founded model of the program. Such model can be computed in polynomial time. Ob-

viously, checking whether such model satisfies the constraint can be done in polyno-

mial time.

3

Notice that the encoding, dep∗(AD) of the dependency graph of an action descrip-

tion AD can be computed directly from the encoding, α(AD), of AD into A-Prolog.

It is not difficult to show that dep∗(AD) can be extracted from the answer set of the

program α(AD) ∪ depgen, where depgen is:

70

arc(FL1, FL2)←
slaw(L),

parlist(L, P),

head(L, P, FL1),

prec(L, P, N, FL2),

all static(L, P).

plus arc(FL1, FL2)←
slaw(L),

parlist(L, P),

head(L, P, FL1),

prec(L, P, N1, FL2),

all static(L, P),

prec(L, P, N2, FL3),

FL3 ! = FL2.

all static(L, P,N)←
parlist(L, P),

not has prec(L,N).

all static(L, P,N1)←
parlist(L, P),

static true(L, P, N1),

N2 = N1 + 1,

all static(L, P, N2).

all static(L, P)←
parlist(L, P),

all static(L, P, 1).

static true(L, P,N)←
parlist(L, P),

static(S),

prec(L, P, N, S),

is true(S).

static true(L, P,N)←
parlist(L, P),

f literal(FL),

prec(L, P, N, FL).

71

CHAPTER VI

REASONING ALGORITHMS

6.1 Planning

Computation of plans in our agent follows the answer set planning approach. The

term answer set planning was introduced in [44] to describe a planning technique

based on a translation of domain descriptions into logic programs and on reducing

planning to finding the answer sets of those logic programs.

The following terminology characterizes the description of planning tasks. A sys-

tem is a pair SY = 〈Σ, T rans〉, where Σ is an action signature, and Trans is a tran-

sition diagram defined on Σ.

A planning domain is a pair PD = 〈SY, g〉, where SY is a system and g is a goal

(recall that a goal is a finite set of fluent literals that the agent has to make true). A

planning problem is a pair 〈PD, HcT 〉, where PD is a planning domain and HcT is

the recorded history.

To simplify notation, we use a pair 〈D, g〉 (where D = 〈AD,HcT 〉 is a domain

description and g a goal) as an abbreviation of the planning problem 〈〈SY, g〉, HcT 〉
where SY = 〈sig(AD), trans(AD)〉. In the rest of the discussion, when we talk

about a fixed planning domain, we denote the corresponding action signature, domain

description, action description and goal by Σ, D, AD, and g respectively.

Hence, planning for a goal g is reduced to finding a sequence 〈a1, . . . , ak〉 of com-

pound agent actions such that:

HcT |=AD h after(g, 〈a1, . . . , ak〉). (6.1)

Such sequence is called plan.

Shortest plans can be computed by the following simple planning component.

Algorithm PC0

Input:

72

• domain description, D = 〈AD,HcT 〉;

• goal g = {l1, . . . , lm}.

Output:

• a sequence of agent actions, 〈a1, . . . , ak〉, satisfying (6.1).

Steps:

1. k := 0

2. find a sequence 〈a1, . . . , ak〉 that satisfies (6.1)

3. if such a sequence exits, then return it

4. k := k + 1

5. goto 2

The computation at step 2 is reduced to computing an answer set of the program:

Plan0(D, g, k) = α(D) ∪ AGEN(k) ∪GOALTEST (g, k)

where:

• k is the length of the plan that the agent is looking for;

• AGEN(k) is:

1{o(A, T) : ag action(A)} ← cT ≤ T < cT + k.

where cT is the current time step, as specified by the history HcT , k is the plan

length currently being considered, and ag action is a relation that is true for

agent actions. The rule informally says that each step T of an action sequence

contains a non-empty compound action.

73

• GOALTEST ({l1, . . . , lm}, k) is:

goal achieved← h(l1, cT + k),

. . . ,

h(lm, cT + k).

← not goal achieved.

where li’s are the elements of goal g. The first rule informally says that goal g

has been achieved if all li’s are expected to be true at the end of the execution

of the action sequence. The second says that any action sequence computed

must be a plan (i.e., it must achieve the goal).

The structure of Plan0 follows the generate (define) and test approach described in

[25, 43, 29], where AGEN generates candidate plans, α(D) defines the effects of the

actions, and GOALTEST tests whether an action sequence achieves the goal.

The next theorem proves that step 2 can be reduced to computing the answer sets

of Plan0(D, g, k).

Theorem 6.1.1. For every deterministic domain description, D = 〈AD, HcT 〉, such

that HcT contains complete information about the initial state, for every goal, g, and

for every non-negative integer, k:

a sequence of compound agent actions, p = 〈a1, . . . , ak〉 is a plan for g w.r.t. D

iff there exists an answer set, A, of Plan0(D, g, k), such that, for every 1 ≤ i ≤ k,

ai = {a | o(a, cT + i) ∈ A ∧ a ∈ actionag(sig(AD))}.

Proof. (sketch)

First of all, we need to prove that Plan0(D, g, k) finds the plans of length k for g.

This follows from the following observations:

1. For any future step t, AGEN generates all possible sets of occurrences of the

agent’s actions at t.

74

2. By Theorem 4.3.1 there is a one-to-one correspondence between the models of

HcT and the answer sets of α(D).

3. Because of GOALTEST (g, k), all the answer sets of Plan0(D, g, k) are bound

to satisfy the goal at cT + k.

4. Because of the lower bound in AGEN , at least one occurrence is generated at

each step.

In fact, (2) can be used to show that the results of the sequences of actions mentioned

in (1) are correctly predicted by Plan0(D, g, k). (3) guarantees that only sequences of

actions that achieve the goal are encoded by the answer sets of Plan0(D, g, k). Next,

the assumption that D is deterministic allows to conclude that the sequences of actions

encoded by the answer sets are plans. Finally, from (4) it follows that the answer sets

encode all the plans that are exactly k steps long (i.e. they terminate at cT + k).

3

Finally, the next theorem proves that algorithm PC0 is sound and complete with

respect to the definition of shortest plan.

Theorem 6.1.2. For every deterministic domain description, D = 〈AD, HcT 〉, such

that HcT contains complete information about the initial state, and for every goal g:

a sequence of compound actions, p, is a shortest plan for g w.r.t. D iff p is

returned by PC0(D, g).

Proof. Observe that the algorithm computes the answer sets of the sequence of

programs Plan0(D, g, 0), Plan0(D, g, 1), Plan0(D, g, 2), . . . and terminates for the

smallest k such that Plan0(D, g, k) is consistent.

By theorem 6.1.1, Plan0(D, g, k) is consistent iff at least one plan of length k

exist. Hence, the plan returned is a shortest plan.

3

In this dissertation, we address the following questions:

75

• Does this approach scale well to medium-size, knowledge-intensive applications?

• How can we specify criteria (different from length minimization) for the selection

of best plans?

To answer the first question, we have developed USA-Advisor, a medium-size appli-

cation that computes plans in the presence of malfunctioning components in the Re-

action Control System of the Space Shuttle. To address the second question, we used

cr-rules and preferences of CR-Prolog. The following section gives more details on

the first topic1, while the use of CR-Prolog is discussed in Chapter VIII.

6.1.1 USA-Advisor

USA-Advisor is a decision support system for the Reaction Control System (RCS)

of the Space Shuttle, designed in the context of a project aimed at demonstrating

the applicability of A-Prolog, and of answer set planning in particular, to medium-

size, knowledge-intensive applications. The project also demonstrated that A-Prolog

allows for a modular organization of knowledge, enabling knowledge module reuse, as

well as testing (and debugging) of single knowledge modules, rather than of the entire

knowledge base as a whole. The techniques used in the development of USA-Advisor

are general enough to allow for the modeling of many other physical systems, and for

the execution of reasoning tasks other than planning, including fault detection and

diagnosis.

The RCS is the system that is primarily used to perform rotational and trans-

lational movements during flight. It is a rather complex physical system, that in-

cludes 12 tanks, 44 jets, 66 valves, 33 switches, and around 40 computer commands

(computer-generated signals). USA-Advisor contains a complete model of the RCS,

including wiring and plumbing diagrams.

To understand the functionality of USA-Advisor, let us imagine a Shuttle’s flight

controller who is considering how to prepare the Shuttle for a maneuver when faced

1These results have been published in part in [2]

76

with a collection of faults present in the RCS (for example, switches and valves can be

stuck in various positions, electrical circuits can malfunction in various ways, valves

can be leaking, jets can be damaged, etc.). In this situation, the controller needs to

find a sequence of actions to set the shuttle ready for the maneuver, i.e. that delivers

propellant to an appropriate set of jets. USA-Advisor is designed to facilitate this

task. The controller can use it to test if a plan, which he came up with manually,

will actually be able to prepare the RCS for the desired maneuver. Most importantly,

USA-Advisor can be used to automatically find such a plan.

We now give a brief introduction to the design of the system.

6.1.1.1 System’s Design

USA-Advisor consists of a collection of largely independent A-Prolog modules,

represented by lp-functions2, and a graphical Java interface. The interface gives a

simple way for the user to enter information about the history of the RCS, its faults,

and the task to be performed. The A-Prolog modules are organized in knowledge

modules and reasoning modules. Each knowledge module contains a different part

of the knowledge about the domain of the RCS, while each reasoning module is

responsible for performing a different reasoning task. At the moment there are two

possible types of tasks:

• checking if a sequence of occurrences of actions in the history of the system

satisfies a given goal, G;

• finding a plan for G of a length not exceeding some number of steps, N .

The set of A-Prolog modules that are used depends on the particular task being

performed (e.g. detailed knowledge about electrical circuits is included only in pres-

ence of electrical faults). Based on the information provided by the user, the graph-

2By an lp-function we mean program Π of A-Prolog with input and output signatures σi(Π) and

σo(Π) and a set dom(Π) of sets of literals from σi(Π) such that, for any X ∈ dom(Π), Π ∪ X is

consistent, i.e. has an answer set.

77

ical interface verifies if the input is complete, selects an appropriate combination of

modules, assembles everything into an A-Prolog program, Π, and passes Π as an in-

put to an inference engine for computing its answer sets.

The results of the reasoning task are then extracted from the answer sets of Π. The

interpretation of the contents of the answer sets depends, again, on the reasoning task

being performed. In our approach, the task of verifying the correctness of a sequence

of actions is reduced to checking if program Π has at least an answer set. On the other

hand, the planning module is designed so that there is a one-to-one correspondence

between the plans and the answer sets of Π. Extraction and displaying of the results

is performed by the Java interface.

The modules that compose USA-Advisor are:

• the Plumbing Module;

• the Valve Control Module (divided in “Basic Valve Control Module” and “Ex-

tended Valve Control Module”);

• Circuit Theory Module;

• Planning Module.

We continue with the descriptions of the various modules.

6.1.1.2 Plumbing Module

The Plumbing Module (PM) models the plumbing system of the RCS, which

consists of a collection of tanks, jets and pipe junctions connected through pipes.

The flow of fluids through the pipes is controlled by valves. The system’s purpose

is to deliver fuel and oxidizer from tanks to the jets needed to perform a maneuver.

The structure of the plumbing system is described by a directed graph, Gr, whose

nodes are tanks, jets and pipe junctions, and whose arcs are labeled by valves. The

possible faults of the system at this level are leaky valves, damaged jets, and valves

stuck in some position.

78

The purpose of PM is to describe how faults and changes in the position of valves

affect the pressure of tanks, jets and junctions. In particular, when fuel and oxidizer

flow at the right pressure from the tanks to a properly working jet, the jet is considered

ready to fire. In order for a maneuver to be started, all the jets it requires must be

ready to fire. The necessary condition for a fluid to flow from a tank to a jet, and in

general to any node of Gr, is that there exists a path without leaks from the tank to

the node and that all valves along the path are open.

The rules of PM define a function which takes as input the structural description,

Gr, of the plumbing system, its current state, including position of valves and the list

of faulty components, and determines: the distribution of pressure through the nodes

of Gr; which jets are ready to fire; which maneuvers are ready to be performed. In our

approach, the state of the plumbing system (as well as of the electrical system shown

later) consists of the set of fluents (properties of the domain whose truth depends on

time) which are true in that state.

To illustrate the issues involved in the construction of PM , let us consider the

definition of fluent pressurized by(N, Tk), describing the pressure obtained on a node

N by a tank Tk. Some special nodes, the helium tanks, are always pressurized. For

all other nodes, the definition is recursive. It says that any node N1 is pressurized

by a tank Tk if N1 is not leaking and is connected by an open valve to a node N2

which is pressurized by Tk.

Representation of this definition in most logic programming languages, including

Prolog, is problematic, since the corresponding graph can contain cycles. The ability

of A-Prolog to express and to reason with recursion allows us to use the following

79

concise definition of pressure on non-tank nodes.

h(pressurized by(N1, Tk), T)←
not tank of(N1, R),

not h(leaking(N1), T),

link(N2, N1, V),

h(in state(V, open), T),

h(pressurized by(N2, Tk), T).

The high level of abstraction of A-Prolog is confirmed by the relatively small

number of rules present in the knowledge modules of USA-Advisor. For example, the

Plumbing Module consists of approximately 40 rules.

6.1.1.3 Valve Control Module

The flow of fuel and oxidizer propellants from tanks to jets is controlled by

opening/closing valves along the path. The state of valves can be changed either by

manipulating mechanical switches or by issuing computer commands. Switches and

computer commands are connected to the valves, they control, by electrical circuits.

The action of flipping a switch Sw to some position S normally puts a valve con-

trolled by Sw in this position. Similarly for computer commands. There are, how-

ever, three types of possible failures: switches and valves can be stuck in some po-

sition, and electrical circuits can malfunction in various ways. Substantial simplifi-

cation of the V CM module is achieved by dividing it in two parts, called basic and

extended V CM modules.

At the basic level, it is assumed that all electrical circuits are working properly

and therefore are not included in the representation. The extended level includes

information about electrical circuits and is normally used when some of the circuits

are malfunctioning. In that case, flipping switches and issuing computer commands

may produce results that cannot be predicted by the basic representation.

80

6.1.1.4 Basic Valve Control Module

At this level, the V CM deals with a set of switches, computer commands and

valves, and connections among them. The input of the basic V CM consists of the

initial positions and faults of switches and valves, and the sequence of actions defining

the history of events. The module implements an lp-function that, given this input,

returns positions of valves at the current moment of time. This output is used as

input to the plumbing module. The possible faults of the system at this level are

valves and switches stuck at some position(s).

The following rules show an example of the formalization of the basic VCM. The

first is a dynamic causal rule stating that, if a properly working switch Sw is flipped

to state S at time T , then Sw will be in this state at the next moment of time.

h(in state(Sw, S), T + 1)←
occurs(flip(Sw, S), T),

not stuck(Sw).

A static connection between switches and valves is expressed by the next rule.

This static law says that, under normal conditions, if switch Sw controlling a valve

V is in some state S (different from gpc3) at time T , then V is also in this state at

the same time.

h(in state(V, S), T)←
controls(Sw, V),

h(in state(Sw, S), T),

neq(S, gpc),

not h(abinput(V), T),

not stuck(V),

not bad circuitry(V).

The condition not bad circuitry(V) is used to stop this rule from being applied

when the circuit connecting Sw and V is not working properly. (Notice that the

3A switch can be in one of three positions: open, closed, or gpc. When it is in gpc, it does not

affect the state of the valve.

81

previous dynamic rule, instead, is applied independently of the functioning conditions

of the circuit, since it is related only to the switch itself.) If the switch is in a position,

S1, different from gpc, and a computer command is issued to move the valve to

position S2, then there is a conflict in case S1 6= S2. This is an abnormal situation,

which is expressed by fluent ab input(V). When this fluent is true, negation as failure

is used to stop the application of this rule. In fact, the final position of the valve can

only be determined by using the representation of the electrical circuit that controls

it. This will be discussed in the next section.

6.1.1.5 Extended Valve Control Module

The extended V CM encompasses the basic V CM and also includes information

about electrical circuits, power and control buses, and the wiring connections among

all the components of the system.

The lp-function defined by this module takes as input the same information ac-

cepted by the basic V CM , together with faults on power buses, control buses and

electrical circuits. It returns the positions of valves at the current moment of time,

exactly like the basic V CM .

Since (possibly malfunctioning) electrical circuits are part of the representation,

it is necessary to compute the signals present on all wiring connections, in order

to determine the positions of valves. The signals present on the circuit’s wires are

generated by the Circuit Theory Module (CTM), included in the extended V CM .

Since this module was developed independently to address a different collection of

tasks [5], its use in this system is described in a separate section.

There are two main types of valves in the RCS: solenoid and motor controlled

valves. Depending on the number of input wires they have, motor controlled valves

are further divided in 3 sub-types. While at the basic V CM there is no need to

distinguish between these different types of valves, they must be taken into account

at the extended level, since the type determines the number of input wires of the

valve. In all cases, the state of a valve is normally determined by the signals present

82

on its input wires.

For the solenoid valve, its two input wires are labeled open and closed. If the open

wire is set to 1 and the closed wire is set to 0, the valve moves to state open. Similarly

for the state closed. The following static law defines this behavior.

h(in state(V, S1), T)←
input(W1, V),

input(W2, V),

input of type(W1, S1),

input of type(W2, S2),

h(value(W1, 1), T),

h(value(W2, 0), T),

neq(S1, S2),

not stuck(V).

The state of all other types of valves is determined in much the same way. The

only difference is in the number of wires that are taken into consideration.

The output signals of switches, valves, power buses and control buses are also

defined by means of static causal laws.

At this level, the representation of a switch is extended by a collection of input

and output wires. Each input wire is associated to one and only one output wire,

and every input/output pair is linked to a position of the switch. When a switch is in

position S, an electrical connection is established between input Wi and output Wo

of the pair(s) corresponding to S. Therefore, the signal present on Wi is transferred

to Wo, as expressed by the following rule.

h(value(Wo,X), T)←
h(in state(Sw, S), T),

connects(S, Sw, Wi, Wo),

h(value(Wi,X), T).

The V CM consists of 36 rules, not including the rules of the Circuit Theory

Module.

83

6.1.1.6 Circuit Theory Module

The Circuit Theory Module (CTM) is a general description of components of

electrical circuits. It can be used as a stand-alone application for simulation,

computation of the topological delay of a circuit, detection of glitches, and

abduction of the circuit’s inputs given the desired output.

The CTM is employed in this system to model the electrical circuits of the RCS,

which are formed by digital gates and other electrical components, connected by wires.

Here, we refer to both types of components as gates. The structure of an electrical

circuit is represented by a directed graph E where gates are nodes and wires are

arcs. A gate can possibly have a propagation delay D associated with it, where D

is a natural number (zero indicates no delay). All signals present in the circuit are

expressed in 3-valued logic (0, 1, u). If no value is present on a wire at a certain

moment of time T then it is said to be unknown (u) at T .

This module describes the normal and faulty behavior of electrical circuits with

possible propagation delays and 3-valued logic.

In CTM , input wires of a circuit are defined as the wires coming from switches,

valves, computer commands, power buses and control buses. Output wires are those

that go to valves. The CTM is an lp-function that takes as input the description of

a circuit C, the values of signals present on its input wires, the set of faults affecting

its gates, and determines the values on the output wires of C at the current moment

of time.

We allow for standard faults from the theory of digital circuits [40, 54]. A gate G

malfunctions if its output, or at least one of its input pins, are permanently stuck on

a signal value. The effect of a fault associated to a gate of the direct graph E only

propagates forward.

CTM contains two sets of static rules. One of them allows for the representation

of the normal behavior of gates, while the other expresses their faulty behavior. To

illustrate how the normal behavior of gates is described in the CTM , let us consider

the case of the Tri-State gate. This type of component has two input wires, of which

84

one is labeled enable. If this wire is set to 1, the value of the other input is transferred

to the output wire. Otherwise, the output is undefined. The following rule describes

the normal behavior of the Tri-State gate when it is enabled.

h(value(W,X), T + D)←
delay(G,D),

input(W1, G),

input(W2, G),

type of wire(W2, G, enable),

neq(W1,W2),

h(value(W1, X), T),

h(value(W2, 1), T),

output(W,G),

not is stuck(W,G).

It is interesting to discuss how faults are treated when they occur on the input

wire of a gate. Let us consider the case of a gate G with an input wire stuck at

value X. This wire is represented as two unconnected wires, W and stuck wire(W),

corresponding to the normal and faulty sections of the wire. The faulty part is stuck

at value X, while the value of W is computed by normal rules depending upon

its connection to the output of other gates. Rules for gates with faulty inputs use

stuck wire(W) as input wire. The example below is related to a Tri-State gate with

85

the non-enable wire stuck to X.

h(value(W,X), T + D)←
delay(G,D),

input(stuck wire(W1), G),

input(W2, G),

type of wire(W2, G, enable),

neq(W1,W2),

h(value(stuck wire(W1), X), T),

h(value(W2, 1), T),

output(W,G),

not is stuck(W,G).

Notice that condition not is stuck(W,G) prevents the above rules from being ap-

plied when the output wire is stuck. Whenever an output wire is stuck at X, the

corresponding rule guarantees that its signal value is always X.

The behavior of a circuit is said normal if all its gates are functioning correctly.

If one or more gates of a circuit malfunction then the circuit is called faulty.

The description of faulty electrical circuit(s) is included as part of the RCS rep-

resentation. However, it is not necessary to add the description of normal circuits

controlling a valve(s) since the program can reason about effects of actions performed

on that valve through the basic V CM . This allows for an increase in efficiency when

computing models of the program.

The Circuit Theory Module contains approximately 50 rules.

6.1.1.7 Planning module

This module establishes the search criteria used by the program to find a plan, i.e.

a sequence of actions that, if executed, would achieve the goal. The modular design

of USA-Advisor allows for the creation of a variety of such modules.

The structure of the Planning Module (PlM) follows the generate and test

approach described in [25, 43]. Since the RCS contains more than 200 actions, with

86

rather complex effects, and may require very long plans, this standard approach

needs to be substantially improved. This is done by addition of various forms of

heuristic, domain-dependent information4. In particular, the generation part takes

advantage of the fact that the RCS consists of three, largely independent,

subsystems. A plan for the RCS can therefore be viewed as the composition of three

separate plans that can operate in parallel. Generation is implemented using the

following rule:

1{occurs(A, T) : action of(A,R)}1←
subsystem(R),

not goal(T, R).

This rule states that exactly one action for each subsystem of the RCS should occur

at each moment of time, until the goal is reached for that subsystem.

In the RCS, the common task is to prepare the shuttle for a given maneuver.

The goal of preparing for such a maneuver can be split into several subgoals, each

setting some jets, from a particular subsystem, ready to fire. The overall goal can

therefore be stated as a composition of the goals of individual subsystems containing

the desired jets, as follows:

goal ←
goal(T1, leftrcs),

goal(T2, rightrcs),

goal(T3, fwdrcs).

The plan testing phase of the search is implemented by the following constraint

← not goal.

which eliminates the models that do not contain plans for the goal.

Splitting into subsystems allows us to improve the efficiency of the module sub-

stantially.

4Notice that the addition does not affect the generality of the algorithm.

87

The module also contains other domain-dependent as well as domain-independent

heuristics. The reasons for adding such heuristics are two-fold: first, to eliminate

plans which are correct but unintended, and second, to increase efficiency. A-Prolog

allows for a concise representation of these heuristics as constraint rules. This can be

demonstrated by means of the following examples.

Some heuristics are instances of domain-independent heuristics. They express

common-sense knowledge like “under normal conditions, do not perform two different

actions with the same effect.” In the RCS, there are two different types of actions

that can move a valve V to a state S: a) flipping to state S the switch, Sw, that

controls V , or b) issuing the (specific) computer command CC capable of moving V

to S. In A-Prolog we can write this heuristic as follows

← occurs(flip(Sw, S), T),

controls(Sw, V),

occurs(CC, T1),

commands(CC, V, S),

not bad circuitry(V).

More domain-dependent rules embody common-sense knowledge of the type “do

not pressurize nodes which are already pressurized.” In the RCS, some nodes can be

pressurized through more than one path. Clearly, performing an action in order to

pressurize a node already pressurized will not invalidate a plan, but this involves an

unnecessary action. The following constraint eliminates models where more than one

path to pressurize a node N2 is open.

← link(N1, N2, V 1),

link(N1, N2, V 2),

neq(V 1, V 2),

h(in state(V 1, open), T),

h(in state(V 2, open), T),

not stuck(V 1, open),

not stuck(V 2, open).

88

As mentioned before, some heuristics are crucial for the improvement of the plan-

ner’s efficiency. One of them states that “a normally functioning valve connecting

nodes N1 and N2 should not be open if N1 is not pressurized.” This heuristic clearly

prunes a significant number of unintended plans. It is represented by a constraint

that discards all plans in which a valve V is opened before the node, preceding it, is

pressurized.

← link(N1, N2, V),

h(in state(V, open), T),

not h(pressurized by(N1, Tk), T),

not has leak(V),

not stuck(V).

The efficiency improvement offered by domain-dependent heuristics has not been

studied mathematically. However, experiments showed impressive results. In the case

of tasks involving a large number of faults, for example, the introduction of some of

the most effective heuristics reduced the time required to find a plan from hours to

seconds.

6.2 Unexpected Observations

An unexpected observation is an observation that contradicts the agent’s expec-

tations about the state of the domain. In the observe-think-act loop, unexpected ob-

servations are detected when the domain description is inconsistent; to remove the

inconsistency, the agent needs to find an explanation of the discrepancy between the

observations and its expectations. More precisely, unexpected observations are ex-

plained by:

• hypothesizing that the current domain description does not adequately model

the domain, and

• finding how the domain description can be modified to match the observations.

89

In principle, unexpected observations may be due to problems in the recorded history,

in the action description, or in both. In the first case, we say that the recorded history

is problematic. In the second case, the action description is problematic. In the third

case, both are problematic. We call the first task diagnosis, the second learning, and

the third mixed interpretation task.

To simplify the study, we focus only on the first two cases. We also restrict

attention to agents operating physical devices and capable of testing and repairing

the device components. We call the domains corresponding to this scenario physical

systems.

A physical system is represented by a triple PS = 〈Σ, T rans, Cm〉, where:

• Σ is an action signature;

• Trans is a transition diagram defined on Σ;

• Cm is a set of constants from Σ, called components of PS.

We assume that Σ contains a fluent predicate ab. Intuitively, ab(c) (where c ∈ Cm)

states that component c is malfunctioning [62].

In this dissertation we make the assumption that environments are non-intrusive,

i.e. do not normally interfere with the agent’s work. This assumption is particularly

important when the agent needs to perform tests to determine whether a possible

explanation of unexpected observations is indeed correct.

In our formalization of the interpretation of unexpected observations, an

important role is played by the actual evolution of the system, a sequence

W = 〈τ0, a0, τ1, . . . , ak−1, τk, ak, . . .〉 where ai’s are compound actions and τi’s (called

moments) are consistent and complete sets of literals from the action signature of

the system. Intuitively, W describes the sequence of steps that the system actually

went through. Notice that the only direct knowledge that the agent has about W

comes from the observe step in the observe-think-act loop, and by the recordings of

its own actions. We denote the moment and action at step i of W by τ(W, i) and

act(W, i).

90

An interpretation domain is a pair 〈PS,W 〉, where PS is a physical system and

W is its actual evolution. An interpretation problem is a pair 〈ID,HcT 〉, where ID

is an interpretation domain and HcT is the recorded history.

To simplify notation, we often use a pair 〈D, W 〉 (where D = 〈AD,HcT 〉 is a

domain description) as an abbreviation of the interpretation problem 〈〈PS, W 〉, HcT 〉
where PS = 〈sig(AD), trans(AD), Cm〉 and Cm is implicitly defined by sig(AD).

In the rest of the discussion, when we talk about a fixed interpretation domain, we

denote the corresponding action signature and components of the physical system by

Σ and Cm respectively.

The introduction of the above terminology allows us to precisely characterize

diagnostic, learning and mixed tasks. Given an interpretation problem PI = 〈D, W 〉
where D = 〈AD,HcT 〉:

• if W is a path from trans(AD), and for every 0 ≤ i < cT :

– act(W, i) ⊇ {ae | hpd(ae, i) ∈ HcT}, and

– act(W, i) \ {ae | hpd(ae, i) ∈ HcT} ⊆ actionex(Σ)

then PI is a diagnostic problem, and the corresponding reasoning task is a

diagnostic task (the moments of W are thus states, and can be denoted by

expressions of the form σ(W, i));

• if W is not a path from trans(AD) and, for every 0 ≤ i < cT ,

act(W, i) = {ae | hpd(ae, i) ∈ HcT},

then PI is a learning problem and the corresponding reasoning task is a learning

task;

• if W is not a path from trans(AD), and for every 0 ≤ i < cT :

– act(W, i) ⊇ {ae | hpd(ae, i) ∈ HcT}, and

– act(W, i) \ {ae | hpd(ae, i) ∈ HcT} ⊂ actionex(Σ)

91

where for some i the first inclusion is strict, then PI is a mixed interpretation

problem and the corresponding reasoning task is a mixed interpretation task.

Central to all of the above reasoning tasks is the notion of symptom, which we now

introduce.

In the rest of the discussion, Om
n (n ≤ m) denotes a set of statements of ALh,

corresponding to observations made by the agent between steps n and m. Given an

interpretation problem, PI = 〈D, W 〉, a pair 〈Hn, OcT
n 〉 (where Hn ∪ OcT

n = HcT) is

called a configuration of PI . We say that a configuration

S = 〈Hn, OcT
n 〉 (6.2)

is a symptom of the system’s malfunctioning if Hn is consistent and Hn ∪OcT
n is not.

6.2.1 Diagnosis

In this section, we discuss how answer set programming can be used to perform

diagnostic tasks.

The underlying assumption that guides the agent during diagnosis is that the en-

vironment is observable, i.e. the agent normally observes all of the domain occur-

rences of exogenous actions. The agent is, however, aware of the fact that these as-

sumptions can be contradicted by observations. As a result the agent is ready to

observe and to take into account occasional occurrences of exogenous actions.

The following example will be used throughout the section.

Example 6.2.1. Consider a system PS consisting of an agent operating an analog

circuit ACdiag from Figure 6.1. We assume that switches s1 and s2 are mechanical

components which cannot become damaged. Relay r is a magnetic coil. If not damaged,

it is activated when s1 is closed, causing s2 to close. Undamaged bulb b emits light if s2

is closed. For simplicity of presentation we consider the agent capable of performing

only one action, close(s1). The environment can be represented by two damaging

exogenous actions: brk, which causes b to become faulty, and srg (power surge),

92

b

r s1

s2

+

-

Figure 6.1: Circuit ACdiag

which damages r and also b assuming that b is not protected. Suppose that the agent

operating this device is given a goal of lighting the bulb. He realizes that this can be

achieved by closing the first switch, performs the operation, and discovers that the

bulb is not lit. The goal of this section is to develop methods for modeling the agent’s

behavior after this discovery.

The following is a description of system PS from Example 6.2.1:

Objects

r, b : component

s1, s2 : switch
Fluents

active(r)

on(b)

prot(b)

closed(SW)

ab(X)

Agent

Actions

close(s1)
Exogenous

Actions

brk

srg

93

• Laws describing normal functioning of PS:

close(s1) causes closed(s1)

caused active(r) if closed(s1),¬ab(r)

caused closed(s2) if active(r)

caused on(b) if closed(s2),¬ab(b)

caused ¬on(b) if ¬closed(s2)

close(s1) impossible if closed(s1)

• Information about system’s abnormal behavior:

brk causes ab(b)

srg causes ab(r)

srg causes ab(b) if ¬prot(b)

caused ¬on(b) if ab(b)

caused ¬active(r) if ab(r)

Now consider a history, Γ1, of PS:

Γ1

hpd(close(s1), 0).

obs(¬closed(s1), 0).

obs(¬closed(s2), 0).

obs(¬ab(b), 0).

obs(¬ab(r), 0).

obs(prot(b), 0).

Γ1 says that, initially, the agent observed that s1 and s2 were open, both the bulb, b,

and the relay, r, were not to be damaged, and the bulb was protected from surges.

Γ1 also contains the observation that action close(s1) occurred at step 0.

6.2.1.1 Basic Definitions

Our definition of candidate diagnosis of a symptom (6.2) is based on the notion of

explanation from [3]. According to that terminology, an explanation, E, of symptom

(6.2) is a collection of statements

E = {hpd(ae, s) | 0 ≤ s < n and ae ∈ actionex(Σ)} (6.3)

such that Hn∪OcT
n ∪E is consistent. We also introduce the notion of possible fault-set

of an explanation E, which intuitively corresponds to the set of components of PS

that may be damaged by actions from E. More precisely:

94

Definition 6.2.1. A set ∆E ⊆ Cm is a possible fault-set of explanation E if there

exists a model M of Hn ∪OcT
n ∪ E such that:

∆E = {c | M |=AD h(ab(c), cT)}.

Definition 6.2.2. A candidate diagnosis of symptom (6.2) is a pair

cD = 〈E, ∆E〉,

where E is an explanation of the symptom and ∆E is a possible fault-set of E.

We denote the elements of a candidate diagnosis, cD, by E(cD) and ∆(cD) re-

spectively.

Definition 6.2.3. We say that Di is a diagnosis of a symptom S = 〈Hn, OcT
n 〉 if Di

is a candidate diagnosis of S such that all components of ∆(Di) are faulty, i.e., for

every c ∈ ∆(Di), ab(c) ∈ σ(W, cT).

6.2.1.2 Computing candidate diagnoses

Now we show how the need for diagnosis can be determined and candidate diag-

noses found by the techniques of answer set programming.

Now let DP = 〈D,W 〉 be a diagnostic problem, S be a configuration of DP of

the form (6.2), and let

Conf(S) = α(AD) ∪Hn ∪OcT
n ∪R (6.4)

where

R

h(f, 0) ← not h(¬f, 0).

h(¬f, 0) ← not h(f, 0).

for every fluent f from the signature of D. The rules of R are sometimes called

the awareness axioms. They guarantee that initially the agent considers all possible

values of the domain fluents. (If the agent’s information about the initial state of the

system is complete these axioms can be omitted.) The following theorem forms the

basis for our diagnostic algorithms.

95

Theorem 6.2.1. Let S = 〈Hn, OcT
n 〉 where Hn is consistent. Then configuration S

is a symptom of system’s malfunctioning iff program Conf(S) has no answer set.

Proof. The conclusion follows from Lemma 4.2.2, and from Corollary 1 from [3].

3

To diagnose the system, PS, we construct a program, DM , defining the expla-

nation space of our diagnostic agent – a collection of sequences of exogenous events

which could happen (unobserved) in the system’s past and serve as possible explana-

tions of the unexpected observations. We call such programs diagnostic modules for

PS.

The simplest diagnostic module, DM0, consists of the rule:

{o(A, T) : ex action(A)} ← 0 ≤ T < n.

where ex action is a relation that is true for exogenous actions.

Finding the candidate diagnoses of symptom S can be reduced to finding the

answer sets of the diagnostic program

D0(S) = Conf(S) ∪DM0. (6.5)

The link between answer sets and candidate diagnoses is described by the following

definition.

Definition 6.2.4. Let D be a physical domain description, S = 〈Hn, OcT
n 〉 be a

symptom of the system’s malfunctioning, X be a set of ground literals, and E and δ

be sets of ground atoms. We say that 〈E, ∆〉 is determined by X if

E = {hpd(a, t) | o(a, t) ∈ X ∧ a ∈ actionex(Σ)}, and

∆ = {c | obs(ab(c), cT) ∈ X}.

Theorem 6.2.2. Let 〈D, W 〉 be a diagnostic problem, S = 〈Hn, OcT
n 〉 be a symptom

of the system’s malfunctioning, and E and ∆ be sets of ground atoms. Then,

〈E, ∆〉 is a candidate diagnosis of S

96

iff

〈E, ∆〉 is determined by an answer set of D0(S).

Proof. The conclusion follows from Lemma 4.2.2, and from Theorem 2 from [3].

3

The theorem justifies the following simple algorithm for computing candidate

diagnosis of a symptom S:

function Candidate Diag(S: symptom);

Input: a symptom S = 〈Hn, OcT
n 〉.

Output: a candidate diagnosis of the symptom, or 〈∅, ∅〉 if no candidate

diagnosis could be found.

var E : history;

∆ : set of components;

if D0(S) is consistent then

select an answer set, X, of D0(S);

compute 〈E, ∆〉 determined by X;

else

E := ∅; ∆ := ∅;
end

return 〈E, ∆〉;
end

Given a symptom S, the algorithm constructs the program D0(S) and passes it

as an input to the answer set solver. If no answer set is found the algorithm returns

〈∅, ∅〉. Otherwise the algorithm returns a pair 〈E, ∆〉 extracted from some answer set

X of the program. By Theorem 6.2.2 the pair is a candidate diagnosis of S. Notice

97

that the set E extracted from an answer set X of D0(S) cannot be empty and hence

the answer returned by the function is unambiguous. (Indeed, using the Splitting

Set Theorem [45, 76] we can show that the existence of answer set of D0(S) with

empty E will lead to existence of an answer set of Conf(S), which, by Theorem

6.2.1, contradicts S being a symptom.)

The algorithm can be illustrated by the following example.

Example 6.2.2. Let us again consider system PS from Example 6.2.1. According to

Γ1 initially the switches s1 and s2 are open, all circuit components are ok, s1 is closed

by the agent, and b is protected. It is predicted that b will be on at 1. Suppose that,

instead, the agent observes that at step 1 bulb b is off, i.e. O1 = {obs(¬on(b), 1)}.
Intuitively, this is viewed as a symptom S0 = 〈Γ1, O1〉 of malfunctioning of PS.

Program Conf(S0) has no answer sets and therefore, by Theorem 6.2.1, S0 is indeed

a symptom. Diagnoses of S0 can be found by computing the answer sets of D0(S0)

and extracting the necessary information from the computed answer sets. It is easy

to check that, as expected, there are three candidate diagnoses:

D1 = 〈{o(brk, 0)}, {b}〉
D2 = 〈{o(srg, 0)}, {r}〉
D3 = 〈{o(brk, 0), o(srg, 0)}, {b, r}〉

which corresponds to our intuition. Theorem 4.3.1 guarantees correctness of this

computation.

The basic diagnostic module D0 can be modified in many different ways. For

instance, a simple modification, D1(S), which eliminates some candidate diagnoses

containing actions unrelated to the corresponding symptom can be constructed as

98

follows. First, let us introduce some terminology. Let REL be the following program:

REL

1. rel(A,L) ← dlaw(D),

parlist(D,P),

head(D,P, L),

action(D, P, A).

2. rel(A,L) ← law(D),

parlist(D,P),

head(D,P, L),

prec(D, P, N, Pr),

rel(A,Pr).

3. rel(A2, L) ← rel(A1, L),

impcond(D),

parlist(D,P),

action(D, P, A1),

prec(D, P, N, Pr),

rel(A2, P r).

4. rel(A) ← obs(L, T),

T ≥ n,

rel(A,L).

5. ← T < n,

o(A, T),

ex action(A),

not hpd(A, T),

not rel(A).

and

DM1 = DM0 ∪REL ∪ α(D).

The new diagnostic module, D1 is defined as

D1(S) = Conf(S) ∪DM1.

99

(It is not difficult to see that this modification is safe, i.e. D1 will not miss any useful

predictions about the malfunctioning components.) The difference between D0(S)

and D1(S) can be seen from the following example.

Example 6.2.3. Let us expand the system PS from Example 6.2.1 by a new compo-

nent, c, unrelated to the circuit, and an exogenous action a which damages this com-

ponent. It is easy to see that diagnosis S0 from Example 6.2.1 will still be a symptom

of malfunctioning of a new system, Sa, and that the basic diagnostic module applied

to Sa will return diagnoses (D1)− (D3) from Example 6.2.2 together with new diag-

noses containing a and ab(c), e.g.

D4 = 〈{o(brk, 0), o(a, 0)}, {b, c}〉.

Diagnostic module D1 will ignore actions unrelated to S and return only (D1)− (D3).

It may be worth noticing that the distinction between hpd and o allows exogenous

actions, including those unrelated to observations, to actually happen in the past.

Constraint (5) of program REL only prohibits generating such actions in our search

for diagnosis.

There are many other ways of improving quality of candidate diagnoses

by eliminating some redundant or unlikely diagnoses, and by ordering the

corresponding search space. For instance, even more unrelated actions can be

eliminated from the search space of our diagnostic modules by considering relevance

relation rel depending on time. This can be done by a simple modification of

program REL which is left as an exercise to the reader. The diagnostic module D1

can also be further modified by limiting its search to recent occurrences of

exogenous actions. This can be done by

D2(S) = Conf(S) ∪DM2,

where DM2 is obtained by replacing atom 0 ≤ T < n in the bodies of rules of DM0

by n − m ≤ T < n. The constant m determines the time interval in the past that

100

an agent is willing to consider in its search for possible explanations. To simplify our

discussion in the rest of the dissertation we assume that m = 1. Finally, the rule

← k{o(A, n− 1)}.

added to DM2 will eliminate all diagnoses containing more than k actions. Of course

the resulting module D3 as well as D2 can miss some candidate diagnoses and deepen-

ing of the search and/or increase of k may be necessary if no diagnosis of a symptom

is found. There are many other interesting ways of constructing efficient diagnostics

modules. In particular, it is possible to use CR-Prolog and its preferences in the en-

coding of exogenous actions to express the relative likelihood of such actions. We will

come back to this topic in Chapter VIII.

6.2.1.3 Finding a diagnosis

Suppose now the agent has a candidate diagnosis cD of a symptom S. Is it indeed

a diagnosis? To answer this question the agent should be able to test components of

∆(cD). Assuming that no exogenous actions occur during testing a diagnosis can be

found by executing the following algorithm, Find Diag(S):

function Find Diag(var S: symptom);

Input: a symptom S = 〈Hn, OcT
n 〉.

Output: a diagnosis of the symptom, or 〈∅, ∅〉 if no diagnosis

could be found. Upon successful termination of the loop OcT
n

is updated in order to incorporate the results of the tests

performed during the search for a diagnosis.

var O, E : history;

∆, ∆0 : set of components;

diag : bool;

O := the collection of observations of OcT
n ;

repeat

101

〈E, ∆〉 := Candidate Diag(〈Hn, OcT
n 〉);

if E = ∅ { no diagnosis could be found }
return 〈E, ∆〉;

diag := true; ∆0 := ∆;

while ∆0 6= ∅ and diag do

select c ∈ ∆0; ∆0 := ∆0 \ {c};
if observe(cT, ab(c)) = ab(c) then

O := O ∪ obs(ab(c), cT);

else

O := O ∪ obs(¬ab(c), cT);

diag := false;

end

end {while}
until diag;

set the collection of observations of OcT
n equal to O;

return 〈E, ∆〉.
end

The properties of Find Diag are described by the following theorems.

Theorem 6.2.3. For every physical domain description, D, and symptom

S = 〈Hn, OcT
n 〉,

Find Diag(S) terminates.

Proof. The conclusion follows from Lemma 4.2.2, and from part 1 of Theorem 3 from

[3] (the proof is given in Lemma 9 of the extended version of [3], available online at

http://www.krlab.cs.ttu.edu/Papers).

3

Theorem 6.2.4. For every physical domain description, D, symptom S = 〈Hn, OcT
n 〉:

if 〈E, ∆〉 = Find Diag(S), then

102

• if ∆ 6= ∅, then

〈E, ∆〉 is a diagnosis of S;

• otherwise, S has no diagnosis.

Proof. The conclusion follows from Lemma 4.2.2, and from part 2 of Theorem 3 from

[3].

3

To illustrate the algorithm, consider the following example.

Example 6.2.4. Consider the system PS from Example 6.2.1 and a history Γ1 in

which b is not protected, all components of PS are ok, both switches are open, and

the agent closes s1 at step 0. At step 1, he observes that the bulb b is not lit, considers

S = 〈Γ1, O1〉 where O1 = {obs(¬on(b), 1)} and calls function Need Diag(S) which

searches for an answer set of Conf(S). There are no such sets, the diagnostician

realizes he has a symptom to diagnose and calls function Find Diag(S). Let us

assume that the first call to Candidate Diag returns

PD1 = 〈{o(srg, 0)}, {r, b}〉

Suppose that the agent selects component r from ∆ and determines that it is not

faulty. Observation obs(¬ab(r), 1) will be added to O1, diag will be set to false

and the program will call Candidate Diag again with the updated symptom S as a

parameter. Candidate Diag will return another possible diagnosis

PD2 = 〈{o(brk, 0)}, {b}〉

The agent will test bulb b, find it to be faulty, add observation obs(ab(b), 1) to O1

and return PD2. If, however, according to our actual evolution, W , the bulb is still

ok, the function returns 〈∅, ∅〉. No diagnosis is found and the agent (or its designers)

should start looking for a modeling error.

103

6.2.1.4 Diagnostics and repair

Now let us consider a scenario which is only slightly different from that of the

previous example.

Example 6.2.5. Let Γ1 and observation O1 be as in Example 6.2.4 and suppose

that the program’s first call to Candidate Diag returns PD2, b is found to be faulty,

obs(ab(b), 1) is added to O1, and Find Diag returns PD2. The agent proceeds to

have b repaired but, to his disappointment, discovers that b is still not on! Intuitively

this means that PD2 is a wrong diagnosis - there must have been a power surge at 0.

For simplicity we assume that, similar to testing, repair occurs in well controlled

environment, i.e. no exogenous actions happen during the repair process. The example

shows that, in order to find a correct explanation of a symptom, it is essential for

an agent to repair damaged components and observe the behavior of the system after

repair. To formally model this process we introduce a special agent action, repair(c),

for every component c of the physical system. The effect of this action will be defined

by the causal law:

repair(c) causes ¬ab(c).

The diagnostic process will be now modeled by the following algorithm: (Here S =

〈Hn, OcT
n 〉 and {obs(fi, k)} is a collection of observations the agent makes to test his

repair at moment k.)

function Diagnose(S) : boolean;

Input: a symptom S = 〈Hn, OcT
n 〉.

Output: false if no diagnosis can be found. Otherwise

repairs the system, updates the second element of S, and returns true.

var E : history;

∆ : set of components;

E = ∅;

104

while Need Diag(〈Hn ∪ E, OcT
n 〉) do

〈E, ∆〉 = Find Diag(〈Hn, OcT
n 〉);

if E = ∅ then return false

else

Repair(∆);

O := O ∪ {hpd(repair(c),m) : c ∈ ∆};
cT := cT + 1;

O := O ∪ {obs(fi, cT)};
end

end

return true;

end

Example 6.2.6. To illustrate the above algorithm let us go back to the agent from

Example 6.2.5 who just discovered diagnosis PD2 = 〈{o(brk, 0)}, {b}〉. He will repair

the bulb and check if the bulb is lit. It is not, and therefore a new observation is

recorded as follows:

O1 := O1 ∪ {hpd(repair(b), 1), obs(¬on(b), 2)}

Need Diag(S) will detect a continued need for diagnosis, Find Diag(S) will return

PD1, which, after new repair and testing will hopefully prove to be the right diagnosis.

The diagnosis produced by the above algorithm can be viewed as a reasonable in-

terpretation of discrepancies between the agent’s predictions and actual observations.

To complete our analysis of step 1 of the agent’s acting and reasoning loop we need to

explain how this interpretation can be incorporated in the agent’s history. If the di-

agnosis discovered is unique then the answer is obvious – OcT
n is simply added to Hn,

together with the corresponding occurrences of exogenous actions. If however faults

of the system components can be caused by different sets of exogenous actions the

105

situation becomes more subtle. The possible use of CR-Prolog to avoid forcing the

agent to commit to a particular diagnosis will be the subject of future investigation.

Notice that although the above algorithms always return reasonable diagnoses,

often they find too many of them. To narrow the search to “best” diagnoses, a way

to specify preferences among them had to be developed. In the initial steps of our

investigation on the specification of preferences, we found no natural, general way to

specify preferences of this sort using A-Prolog. This led us to the development of

CR-Prolog (see Chapter VII). The use of CR-Prolog for diagnosis is described later,

in Chapter VIII.

6.2.2 Learning

In the previous section we have described how problematic recorded histories are

detected and corrected. In this section, we focus on problematic action descriptions,

i.e. on the case when the action description fails to model some aspect of the domain.

We will show how answer set programming can be used to perform learning tasks.

Recall that, by definition, in learning tasks the agent’s knowledge about occur-

rences of exogenous actions is assumed to be complete. When the action description

is hypothesized to be problematic, the agent finds a new action description, which

accounts for the unexpected observations and remains consistent with the rest of the

recorded history. We assume that all action descriptions in this section are in normal

form (see Section 4.1). Although the results presented here are not difficult to extend

to the general case, focusing on action descriptions in normal form will help simplify

the presentation.

Let us begin by introducing some terminology. Modification statements of action

description AD are expressions:

• dlaw(w), or

slaw(w)

(where w is an unused constant from the action signature of AD) meaning that

w is the name of a new dynamic law or state constraint;

106

• head(w, l)

(where l is an unbound fluent literal from the signature of AD and w is the

name of a new law) meaning that the head of w is l;

• action(w, ae)

(where ae is an unbound elementary action and w is the name of a new dynamic

law) meaning that one element of the trigger of w is ae;

• prec(w, p)

(where p is an unbound fluent literal or a static and w is the name of a law)

meaning that p is a precondition of w.

A collection of modification statements Mod is valid if: (recall that every w

that occurs in statements dlaw(w) or slaw(w) is a fresh constant by definition of

modification statement)

• for every w, only one between dlaw(w) and slaw(w) occurs in Mod;

• head(w, l) ∈Mod for some l iff either dlaw(w) ∈Mod or slaw(w) ∈Mod;

• for every w, at most one statement head(w, l) occurs in Mod;

• action(w, ae) ∈Mod for some ae iff dlaw(w) ∈Mod;

• for every w, at most one statement action(w, ae) occurs in Mod;

Intuitively, these requirements ensure that: (1) the definition of every new law con-

tains exactly one head (and one trigger, for dynamic laws), and that (2) heads and

triggers are defined only for new laws.

Notice that the trigger of new laws is allowed to contain only one elementary

action. The restriction is not difficult to lift, but will simplify the presentation.

Definition 6.2.5. The update of action description AD with respect to a valid col-

lection of modification statements Mod, is an action description AD′ obtained from

AD as follows:

107

• for every w, l such that slaw(w) ∈ Mod and head(w, l) ∈ Mod, AD′ contains

a new state constraint w whose head is l;

• for every w, l, ae such that dlaw(w), head(w, l) and action(w, ae) belong in

Mod, AD′ contains a new dynamic law w whose head is l and whose trigger is

ae;

• for every prec(w, p) ∈Mod, p is added to the body of w in AD′.

The update of AD with respect to Mod is denoted by upd(AD,Mod).

Definition 6.2.6. A valid collection of modification statements, Mod, is a modifi-

cation of an action description (in normal form) AD for symptom S = 〈Hn, OcT
n 〉

if:

• upd(AD, Mod) is in normal form, and

• Hn ∪OcT
n is consistent w.r.t. upd(AD,Mod).

Similarly to diagnosis, we introduce the notion of possible fault-set of a

modification Mod (with respect to AD and S), which intuitively corresponds to the

set of components of PS that may be damaged according to the predictions of

upd(AD, Mod) with respect to the history in S.

Definition 6.2.7. A set ∆ ⊆ Cm is a possible fault-set of modification Mod with

respect to action description AD and symptom S = 〈Hn, OcT
n 〉 if there exists a model

M of Hn ∪OcT
n such that:

∆ = {c | M |=upd(AD,Mod) h(ab(c), cT)}.

Notice that modifications can have multiple possible fault-sets, e.g. if the updated

action descriptions are non-deterministic. We are now ready to characterize candidate

corrections and corrections of an action description.

108

Definition 6.2.8. A candidate correction of action description AD w.r.t. symptom

S = 〈Hn, OcT
n 〉 is a pair

cC = 〈Mod, ∆〉,

where Mod is a modification of AD for S and ∆ is a possible fault-set of Mod.

The elements of candidate correction cC are denoted by Mod(cC) and ∆(cC)

respectively.

We say that a candidate correction cC has weight n if the parameter list of one

law of upd(AD, Mod(cC)) contains n new variables, and the parameter list of no law

contains more than n variables.

Definition 6.2.9. A candidate correction cC of action description AD w.r.t. symp-

tom S = 〈Hn, OcT
n 〉 is a correction of AD w.r.t. S if all the components of ∆(cC) are

faulty, i.e. for every c ∈ ∆(cC), ab(c) ∈ τ(W, cT).

The following example illustrates the definitions.

Example 6.2.7. Let us examine more closely the learning process described in Ex-

ample 3.1.4. First of all, we will need to formalize the action description for that

109

domain. A possible formalization, that we denote by ADl, is as follows.

%% flip(SW) closes SW if it is open, and vice-versa

d1 : flip(SW) causes closed(SW) if ¬closed(SW).

d2 : flip(SW) causes ¬closed(SW) if closed(SW).

%% blow up(B) breaks bulb B

d3 : blow up(B) causes ab(B).

%% B is lit if the corresponding SW is closed,

%% unless B or batt are broken

s1 : on(B) if controls(SW,B), closed(SW),¬ab(B),¬ab(batt).

%% B is not lit if the corresponding SW is open...

s2 : ¬on(B) if controls(SW,B),¬closed(SW).

%% ...or if B or batt are malfunctioning

s3 : ¬on(B) if ab(B).

s4 : ¬on(B) if ab(batt).

%% The battery is always replaced with a working one

d4 : replace(batt) causes ¬ab(batt).

Recall that the agent:

1. observes

{closed(sw1),¬closed(sw2),¬ab(b1),¬ab(b2),

lit(b1),¬lit(b2),¬ab(batt)}

2. performs flip(sw2)

3. observes

{closed(sw2),¬lit(b1),¬lit(b2)}

110

Observations ¬lit(b1),¬lit(b2) are unexpected, and no diagnosis can be found that

explains them.

A few possible modifications of the action description are:

• Modification 1 consists of the statements:

slaw(s∗1),

head(s∗1, ab(x1)), prec(s∗1, eq(x1, batt)),

prec(s∗1, closed(x2)), prec(s∗1, eq(x2, sw1)),

prec(s∗1, closed(x3)), prec(s∗1, eq(x3, sw2))

where xi’s are variables from the signature of AD. The statements correspond

to a new state constraint:

s∗1 : ab(x1) if x1 = batt, closed(x2), x2 = sw1, closed(x3), x3 = sw2,

which is the normal form version of:

s∗1 : ab(batt) if closed(sw1), closed(sw2).

• Modification 2 consists of the statements:

slaw(s∗2),

head(s∗2, ab(x1)), prec(s∗2, eq(x1, batt)),

prec(s∗2, closed(x2)), prec(s∗2, closed(x3)),

prec(s∗2, neq(x2, x3))

which correspond to a new state constraint (sw′ and sw′′ are variables):

s∗2 : ab(batt) if closed(sw′), closed(sw′′), sw′ 6= sw′′.

Notice that this law is more general than the one encoded by modification 1.

• Modification 3 consists of the statements:

slaw(s∗3),

head(s∗3, ab(x1)),

prec(s∗3, closed(x1)), prec(s∗3, eq(x1, sw1)),

prec(s∗3, closed(x2)), prec(s∗3, eq(x2, sw2))

111

which correspond to a new state constraint (b is a variable):

s∗3 : ab(b) if closed(sw1), closed(sw2)

saying that closing both switches causes the bulbs to break.

• Modification 4 consists of the statements:

dlaw(d∗1),

head(d∗1, ab(x1)), prec(d∗1, eq(x1, batt)),

action(d∗1, f lip(x2)), prec(d∗1, eq(x2, sw2)),

prec(d∗1, closed(x3)), prec(d∗1, eq(x3, sw2))

which correspond to a new dynamic law:

d∗1 : flip(sw2) causes ab(batt),¬closed(sw2),

saying that closing sw2 causes the battery to malfunction.

Notice that all the modifications shown explain the observations by concluding either

that batt is malfunctioning or that both bulbs are broken.

Now, assume that, in the actual evolution of the system, only batt is faulty (e.g.

it overloaded). Hence, of the above set, only modifications 1, 2 and 4 correspond to

corrections, because their predictions are true in the actual evolution. Modification 3

does not correspond to a correction because it incorrectly predicts ab(b1) and ab(b2).

Let us now focus on how candidate corrections and corrections of symptoms are

computed using A-Prolog.

6.2.2.1 Computing candidate corrections

As for diagnosis, to determine if a configuration S is a symptom, we test whether

Conf(S) is consistent (see Theorem 6.2.1).

Once a symptom has been identified, we correct the action description of system

PS by constructing a program, LM , that defines the modification space of the learning

112

agent (a collection of modifications of the original action description which serve to

justify the unexpected observations). We call such programs learning modules for

PS.

Intuitively, finding candidate corrections is reduced to computing the answer sets

of the program consisting of the learning module together with the domain descrip-

tion. In fact, the learning module is conceptually very similar to the diagnostic mod-

ule. However, the actual task is made more complex than that of the diagnostic mod-

ule because of the more elaborate structure of the object that the module updates.

This results in the need for extra information about the structure of the action de-

scription to be provided to the learning module.

Therefore, we assume the existence of a function χ, external to the A-Prolog

module, that extends mapping α with the needed information.

Notice that the use of χ does not invalidate our claim that all the reasoning com-

ponents of the agent use the same knowledge. It is easy to show that χ can be used

in place of α both in the planning module and in the diagnostic module.5

Let us start by defining the arguments of χ. Recall (Chapter IV) that, for every

law in normal form w, $(w) contains at most one occurrence of each variable from

w. Consequently, every time a precondition is added to the body of w, the parameter

list of w needs to be expanded accordingly.

For this reason, χ is defined to take as arguments both an action description

AD and a non-negative integer n, where n is the number of new variables to be

added to the arguments of each term pars(X1, . . . , Xk) from α(AD). The value of

χ(AD, m) is a modified version of α(AD), where m new variables have been added to

the arguments of each term formed by pars that occurs in α(AD), and the mapping

defined by predicate par is expanded accordingly. The value of χ(AD,m) also includes

the definitions of other relations, as described below.

For each law w, two facts are included in χ(AD, m) to help the algorithm keep

5To prove the statement, it is sufficient to observe that the added set of rules is stratified, and

that the relations defined by such rules do not belong to the signature of α(AD).

113

track of the number of preconditions and variables initially used by each law:

• initially(has precs(L, nL)), informally read “initially, law L has nL precondi-

tions,”

• initially(has vars(L, iL)), read “initially, law L has iL variables in its parameter

list.”

Recall that that the tokens occurring in the modification statements can be

unbound. When implementing the learning task, we need a way to denote unbound

tokens, i.e. sets of ground tokens, in A-Prolog. Hence, we introduce token names,

which can denote both single ground tokens and (certain) sets of tokens. Token

names are identified by relations lit name (for AL-literals) and act name (for

actions), defined as follows.

Relation lit name is defined in χ as follows:

• for every fluent predicate f , both f and ¬f are AL-literal names6 (denoting the

corresponding unbound fluent literals);

• for every static predicate r with arity n, r(t1, . . . , tn) is an AL-literal name,

where each ti is either a constant or a special term v(j), j being an integer

denoting a position in some parameter list. Similarly, ¬r(t1, . . . , tn) is an AL-

literal name, for all possible assignments of ti’s. (Intuitively, the special terms

v(j) denote variables of AL, while the other terms denote themselves.)

Relation act name is defined similarly to the way lit name is defined for fluent literals.

Since later we will also need to distinguish between names of fluent predicates and

names of statics, we include in χ the extension of relation static, such that static

holds for statics as well as for their names (the extension of relation fliteral can be

obtained by applying the closed world assumption, if needed).

The association between token names and tokens is encoded in χ by a relation

denotes(TNAME, I, L, P, TOK) which says that token name TNAME, when

6For simplicity, here we do not allow the use of the same fluent predicate with different arities.

114

considering the I th variable of law L’s parameter list P , denotes token TOK.

Finally, relation needs variables(TNAME,N) states that token name TNAME

needs N fresh variables in the parameter list of a law to which it is added (hence, all

statics have a corresponding value of 0).

Example 6.2.8. Consider an action description ADd1 containing only the dynamic

law d1:

d1 : {a} causes g(x) if l1(y, z), l2(v),

eq(x, y), eq(z, c1), eq(v, c2).

where c1, c2 are constants, g, li’s are fluent literals, a is an elementary action, and eq

is a static corresponding to the identity relation. The parameter list of d1 is 〈x, y, z, v〉.
In this case, χ(ADd1 , 2) is as follows.

The definition of parlist and par in χ(ADd1 , 2) consists of the atoms (we use Yi

for the variables added by χ to make them easily recognizable):

parlist(d1, pars(X1, . . . , X4, Y1, Y2)).

par(1, pars(X1, . . . , X4, Y1, Y2), X1).

. . .

par(4, pars(X1, . . . , X4, Y1, Y2), X4).

par(5, pars(Y1, . . . , X4, Y1, Y2), Y1).

par(6, pars(Y2, . . . , X4, Y1, Y2), Y2).

115

Relation lit name is defined in χ(ADd1 , 2) by:

lit name(g). lit name(¬g).

lit name(l1). . . .

lit name(l2). lit name(¬l3).

lit name(l3).

lit name(eq(v(1), v(1))). lit name(¬eq(v(1), v(1))).

lit name(eq(v(1), v(2))). lit name(¬eq(v(1), v(2))).

.

lit name(eq(v(4), v(4))). lit name(¬eq(v(4), v(4))).

lit name(eq(v(1), c1)). lit name(¬eq(v(1), c1)).

lit name(eq(v(1), c2)). . . .

. . . lit name(¬eq(c2, v(2))).

lit name(eq(c2, v(2))).

lit name(eq(c1, c1)). lit name(¬eq(c1, c1)).

lit name(eq(c1, c2)). . . .

lit name(eq(c2, c1)). lit name(¬eq(c2, c2)).

lit name(eq(c2, c2)).

. . .

116

Relation static is extended by:

static(eq(v(1), v(1))).

static(eq(v(1), v(2))).

. . .

static(¬eq(v(1), v(1))).

. . .

Relation act name is defined by:

act name(a).

Relation needs variables is defined by:

needs variables(g, 4).

needs variables(l1, 2).

. . .

needs variables(eq(v(1), v(1)), 0).

. . .

needs variables(eq(v(1), c1), 0).

needs variables(a, 0).

. . .

Relation denotes can be defined quite compactly using rules, rather than facts. The

117

following rules show the definition of denotes for AL-literal name l1 in χ(ADd1 , 2).

denotes(l1, I, L, P, l1(X1, X2))←
parlist(L, P),

par(I, P,X1),

par(I + 1, P,X2).

denotes(¬l1, I, L, P,¬l1(X1, X2))←
parlist(L, P),

par(I, P,X1),

par(I + 1, P,X2).

The next rules show the definition of denotes for the AL-literal names of the form

eq(v(V1), v(V2)).

denotes(eq(v(V1), v(V2)), I, L, P, eq(X1, X2))←
parlist(L, P),

par(V1, P,X1),

par(V2, P,X2).

denotes(¬eq(v(V1), v(V2)), I, L, P,¬eq(X1, X2))←
parlist(L, P),

par(V1, P,X1),

par(V2, P,X2).

The definition of denotes for action a is straightforward, since a has no arguments.

denotes(a, I, L, P, a).

On the other hand, if we were to define denotes for some action b with 3 arguments,

118

the corresponding rule would be:

denotes(b, I, L, P, b(X1, X2, X3))←
parlist(L, P),

par(I, P,X1),

par(I + 1, P,X2),

par(I + 2, P,X3).

In the rest of the discussion, we use the term precondition to refer to both AL-

literals used as preconditions of laws and their names when the type of the object is

clear from the context.

Given a learning module LM , finding the candidate corrections of AD for symp-

tom S = 〈Hn, OcT
n 〉 is reduced to finding the answer sets of the following learning

program for an appropriate value of parameter n:

L0(AD,S,m) = χ(AD,m) ∪Hn ∪OcT
n ∪R ∪ LM.

Let us now see how the learning programs are constructed. We start by presenting

a simple learning module, LM0, which is capable of adding new preconditions to the

laws, but cannot add new laws. Recall from Chapter IV that, for every law in normal

form w, the fluent literals in body(w) are unbound, and the statics contain either

constants or variables from $(w). These are the only two types of tokens that we

consider in the learning modules for addition to the laws.

In the module, we adopt the convention that variables beginning with N are used

for indexes of preconditions and variables beginning with I are indexes of variables in

a parameter list. The selection of the AL-literals that need to be added to the bodies

119

of the laws of AD is performed in LM0 by the following selection rule.

% Any precondition LNAME can be missing from position

% N of the body of any law L.

%

{missing prec(LNAME, N,L) :

prec name and pos(LNAME,N, L)} ← law(L).

% LNAME is an AL-literal name and N is

% a valid position for LNAME in the body of L

prec name and pos(LNAME,N, L)← lit name(LNAME),

legal prec pos(N,L).

% N is a legal position for preconditions added to L if it is greater than

% the number of preconditions initially used by the law.

legal prec pos(N,L)← initially(has precs(L,N ′)),

N > N ′.

% No two missing preconditions can be in the same position.

← missing prec(LNAME1, N, L),

missing prec(LNAME2, N, L),

LNAME1 6= LNAME2.

% No “holes” are allowed in the assignment of positions.

← missing prec(LNAME1, N1, L),

no precondition at pos(L,N2), % defined below

missing prec(LNAME3, N3, L),

N2 = N1 + 1,

N3 = N2 + 2.

120

% There is a precondition at position N if one precondition

% was assigned that position.

¬no precondition at pos(L,N)← missing prec(LNAME, N, L).

% Closed world assumption on no precondition at pos.

no precondition at pos(L,N)← not ¬no precondition at pos(L,N).

The actual update of the action description is obtained by the rules shown below.

% If LNAME denotes a missing precondition from the N th position of the body

% of L, then PREC is the N th precondition of L under parameter list P , where

% PREC is the instance of LNAME using variables from the I th position of P .

% (num vars upto prec is defined below)

prec(L, P, N, PREC)← missing prec(LNAME, N,L),

num vars upto prec(I, N − 1, L),

denotes(LNAME, I + 1, L, P, PREC).

% If, before any modification of AD, L has N preconditions and I variables

% then I is the number of variables used by the first N preconditions of L.

num vars upto prec(I, N, L)← initially(has precs(L, N)),

initially(has vars(L, I)).

% If LNAME is the (missing) N th precondition of L, the number of

% variables used by the first N − 1 preconditions is I1, and LNAME

% uses NV new variables, then I1 + NV is the number of variables

% used by the first N preconditions of L.

num vars upto prec(I2, N, L)← missing prec(LNAME, N,L),

num vars upto prec(I1, N − 1, L),

needs variables(LNAME, NV),

I2 = I1 + NV.

It is not difficult to extend LM0 to also perform addition of new laws. Consider a

121

learning module LM1, which extends LM0 by allowing the addition of dynamic laws

and state constraints. Recall that, for simplicity, the trigger of new dynamic laws is

only allowed to contain one elementary action.

For LM1, we assume that the signature of χ(AD, m) is extended with a

sufficient number of fresh constants, used to denote the laws being added.

Furthermore, χ(AD,m) is extended to include:

• facts new law name(w) for each new constant used for laws;

• the extension of relation denotes to link action names to the corresponding

ground elementary actions.

LM1 is defined as:

LM1 = LM0 ∪ ADD LAWS.

Set of rules ADD LAWS is logically divided in two parts. The first part of

ADD LAWS is responsible for the selection of names for the laws that need to be

added to the action description, for determining their type, the name of the fluent

literals used for their heads, and the name of the elementary action used in the

122

trigger (where applicable).

% Any fresh constant L can denote a law that

% is missing from the action description.

%

{missing law(L) : new law name(L)}.

% Each missing law is either a dynamic law or a state constraint.

%

dlaw(L) or slaw(L)← missing law(L).

% Any AL-literal LNAME can be the head of any missing law...

1{missing head(LNAME, L) :

lit name(LNAME)}1← missing law(L).

% ...as long LNAME denotes a fluent literal.

← missing head(LNAME,L), static(LNAME).

% Any action ANAME can be the trigger of any missing

% dynamic law.

%

1{missing act(ANAME, L) :

act name(ANAME)}1← missing law(L),

dlaw(L).

The second part of ADD LAWS maps the selections made by the first part into the

actual encoding of the head and trigger of each law. Moreover, it defines relations

initially(has precs(L, nL)) and initially(has vars(L, iL)) for the new laws, as these

123

relations are necessary to allow the addition of preconditions in LM0.

% If LNAME denotes the missing head of L, then LIT

% is the head of L under parameter list P , where LIT is

% denoted by LNAME when using variables from the first

% position of P .

head(L, P, LIT)← missing head(LNAME, L),

denotes(LNAME, 1, L, P, LIT).

% If ANAME denotes the missing trigger of L, then ACT

% is the trigger of L under parameter list P , where ACT is

% denoted by ANAME when using variables from the I th

% position of P .

action(L, P,ACT)← missing act(ANAME,L),

missing head(LNAME, L),

needs variables(LNAME, I),

denotes(ANAME, I + 1, L, P, ACT).

% The initial number of preconditions in any missing law is 0.

initially(has precs(L, 0))← missing head(LNAME, L).

% The initial number of variables in any missing non-dynamic

% law is the number of variables in its head.

initially(has vars(L, I))← missing head(LNAME, L),

slaw(L),

needs variables(LNAME, I).

124

% The initial number of variables in any missing dynamic law

% is the number of variables in its head and trigger.

initially(has vars(L, I))← missing head(LNAME, L),

missing act(ANAME, L),

needs variables(LNAME, I1),

needs variables(ANAME, I2),

I = I1 + I2.

Candidate corrections can thus be computed by means of the learning program:

L1(AD,S,m) = χ(AD, m) ∪Hn ∪OcT
n ∪R ∪ LM1.

To better understand how L1(AD,S, n) works, consider the following example.

Example 6.2.9. Let us see how the candidate corrections corresponding to the modi-

fications shown in Example 6.2.7 are computed by means of L1(ADl,S, n) (for a suit-

able value of n).

• Candidate correction 1. It is not difficult to show that one of the answer

sets of L1(ADl,S, n) contains the following atoms, encoding modification 1 (the

modification is also encoded by other answer sets, corresponding to all the pos-

125

sible ways of ordering the preconditions),

% Law: s∗1 : ab(batt) if closed(sw1), closed(sw2)

% Definition of the new law

missing law(s∗1)

slaw(s∗1)

% Head of the law: ab(X1), where...

missing head(ab, s∗1)

% ... X1 = batt as stated by the first precondition

missing prec(eq(v(1)), batt), 1, s∗1)

% precondition 2: closed(X2)

missing prec(closed, 2, s∗1)

% precondition 3: closed(X3)

missing prec(closed, 3, s∗1)

% precondition 4: X2 = sw1

missing prec(eq(v(2), sw1), 4, s
∗
1)

% precondition 5: X3 = sw2

missing prec(eq(v(3), sw2), 5, s
∗
1)

The answer set also contains the atom h(ab(batt), 1), encoding the corresponding

fault-set {batt}.

• Candidate correction 2. Another answer set of L1(AD,S, n) encodes mod-

126

ification 2,

% Law: s∗2 : ab(batt) if closed(SW1), closed(SW2), SW1 6= SW2

% Definition of the new law

missing law(s∗2)

slaw(s∗2)

% Head of the law: ab(X1), where...

missing head(ab, s∗2)

% ... X1 = batt as stated by the first precondition

missing prec(eq(v(1)), batt), 1, s∗2)

% precondition 2: closed(X2)

missing prec(closed, 2, s∗2)

% precondition 3: closed(X3)

missing prec(closed, 3, s∗2)

% precondition 4: X2 6= X3

missing prec(neq(v(2), v(3)), 4, s∗2)

together with the encoding of the fault-set {batt}.

• Candidate correction 3. Another answer set of L1(AD,S, n) encodes mod-

127

ification 3,

% Law: s∗3 : ab(B) if closed(sw1), closed(sw2)

% Definition of the new law

missing law(s∗3)

slaw(s∗3)

% Head of the law: ab(X1)

missing head(ab, s∗3)

% precondition 1: closed(X2)

missing prec(closed, 1, s∗3)

% precondition 2: closed(X3)

missing prec(closed, 2, s∗3)

% precondition 3: X2 = sw1

missing prec(eq(v(2), sw1), 3, s
∗
3)

% precondition 4: X3 = sw2

missing prec(eq(v(3), sw2), 4, s
∗
3)

together with the encoding of the fault-set {b1, b2}.

• Candidate correction 4. Another answer set of L1(AD,S, n) encodes mod-

128

ification 4,

% Law: d∗1 : flip(sw2) causes ab(batt),¬closed(sw2)

% Definition of the new law

missing law(d∗1)

dlaw(d∗1)

% Head of the law: ab(X1), where...

missing head(ab, d∗1)

% ... X1 = batt as stated by the first precondition

missing prec(eq(v(1)), batt), 1, d∗1)

% trigger: flip(X2), where...

missing act(flip, d∗1)

% ... X2 = sw2 as stated by the second precondition

missing prec(eq(v(1)), sw2), 2, d
∗
1)

% precondition 3: ¬closed(X3)

missing prec(¬closed, 3, d∗1)

% precondition 4: X3 = sw2

missing prec(eq(v(3), sw2), 3, d
∗
1)

together with the encoding of the fault-set {batt}.

The following algorithm uses L1(AD,S,m) to compute candidate corrections of

weight up to m.

function Candidate Correction(D: domain description,S: symptom,m: integer)

Input: a domain description D = 〈AD, HcT 〉;
a symptom S = 〈Hn, OcT

n 〉;
the maximum weight, m, of the candidate correction returned.

129

Output: a candidate correction of S of weight up to m, or

〈∅, ∅〉 if none could be found.

var Mod : set of modification statements;

∆ : set of components;

if L1(AD,S,m) is consistent then

select an answer set, X, of L1(AD,S, n)

extract 〈Mod, ∆〉 from X

return 〈Mod, ∆〉
end

return 〈∅, ∅〉
end

The extraction of 〈Mod, ∆〉 from X (with respect to an original action description

AD) is accomplished in two parts: ∆ is the set {c | h(ab(c), cT) ∈ X}; essentially,

Mod is obtained from X, with respect to the original action description AD, by

mapping the token names to the corresponding tokens. As the reader will notice,

most of the work consists in maintaining the parameter lists of the laws appropriately

updated.

function Extract Mod(X: answer set of L1(AD,S, n), AD: action description)

Output: a candidate correction of AD corresponding to X

var Mod : set of modification statements;

plist : a list of variables from Σ(AD);

Mod := ∅;
for every missing law(w) ∈ X do

plist := ∅;

130

if slaw(w) ∈ X then Mod := Mod ∪ {slaw(w)};
if dlaw(w) ∈ X then Mod := Mod ∪ {dlaw(w)};
let p be such that missing head(p, w) ∈ X;

select a list x of variables from Σ(AD), not occurring in plist,

of length equal to the arity of p:

Mod := Mod ∪ {head(w, p(x))};
plist := plist ◦ x;

in a similar way, extract action(w, a(x)) from missing act(a, w);

Mod := Mod ∪ Extract prec(X,AD, w, plist);

end { for }

for every missing prec(w) ∈ X such that missing law(w) 6∈ X do

plist := the parameter list of w in AD;

Mod := Mod ∪ Extract prec(X,AD, w, plist);

end { for }
return Mod

end

The extraction of the statements prec(w, p) is performed as follows.

function Extract prec(X: answer set of L1(AD,S, n), AD: action description,

w: a law name, plist: a parameter list)

Output: a set of statements prec(w, p) extracted from X

var Mod : a set of modification statements;

plist′ : a list of variables from Σ(AD);

n : an integer;

Mod := ∅; plist′ := plist;

n := 0; { used to scan the missing prec atoms in the intended order }

131

while missing prec(l, n, w) ∈ X do

if l is the name of a fluent literal then

select a list x of variables from Σ(AD), not occurring in plist′,

of length equal to the arity of l;

Mod := Mod ∪ {prec(w, l(x))};
plist′ := plist′ ◦ x;

end { if }
n := n + 1;

end { while }

{ Notice that, at this stage, the order of the variables added to plist′ is

as expected by the missing prec atoms corresponding to statics.}
for every missing prec(r(x), n, w) ∈ X where r(x) is a static name do

obtain x′ from x by replacing every special term v(i) in x

with the ith variable from plist′;

Mod := Mod ∪ {prec(w, r(x′))};
end { for }
return P

end

6.2.2.2 Finding a correction

After finding a candidate correction cC, the agent has to verify whether cC is

indeed a correction. To do this this, the agent needs to test the components of

∆(cC).

As for diagnosis, we assume that no exogenous actions occur during testing. Hence,

a correction (of weight up to m) can be found by executing the following algorithm,

Find Correction(S,m):

function Find Correction(D: domain description, var S: symptom,m: integer)

132

Input: a domain description D = 〈AD, HcT 〉;
a symptom S = 〈Hn, OcT

n 〉;
the maximum weight, m, of the correction returned.

Output: a correction of the symptom of weight up to m, or

〈∅, ∅〉 if none could be found.

Upon successful termination of the loop OcT
n

is updated in order to incorporate the results of the tests

performed during the search for a correction.

var O : history;

cC : candidate correction;

∆0 : set of components;

corr found : bool;

O := the collection of observations of OcT
n ;

repeat

cC := Candidate Correction(D, 〈Hn, OcT
n 〉,m);

if cC = 〈∅, ∅〉 { no correction could be found }
return 〈∅, ∅〉;

corr found := true; ∆0 := ∆(cC);

while ∆0 6= ∅ and corr found do

select c ∈ ∆0; ∆0 := ∆0 \ {c};
if observe(cT, ab(c)) = ab(c) then

O := O ∪ obs(ab(c), cT);

else

O := O ∪ obs(¬ab(c), cT);

corr found := false;

end

end {while}
until corr found;

133

set the collection of observations of OcT
n equal to O;

return cC

end

The properties of Find Correction are described by the following propositions.

Proposition 6.2.1. For every physical domain description, D, symptom

S = 〈Hn, OcT
n 〉, and integer m,

Find Correction(D,S,m) terminates.

Proof. Essentially identical to the proof of Lemma 9 from the extended version of [3].

3

As we mentioned earlier, the trigger of the new dynamic laws introduced by LM1

is allowed to contain only one elementary action. For this reason, we restrict our

statement of soundness and completeness of algorithm Find Correction to simple

corrections, i.e. corrections that contain only one statement action(w, ae) for each

new dynamic law w (simple collections of modification statements, mentioned below,

are defined accordingly).

Proposition 6.2.2. For every physical domain description, D, symptom

S = 〈Hn, OcT
n 〉, and integer m:

if cC = Find Correction(D,S,m), then

• if ∆(cC) 6= ∅, then

cC is a correction of S of weight up to m;

• otherwise, S has no simple correction of weight up to m.

Proof. The proof of this proposition combines the techniques from Theorems 6.1.1

and 6.1.2 in Section 6.1 with those from Theorem 6.2.4 in Section 6.2.1. The key

134

idea is that the selection rules in the learning module generate atoms that encode all

possible valid simple collections of modification statements.

3

To illustrate the algorithm, consider the following example.

Example 6.2.10. Consider the scenario and the candidate corrections from Example

6.2.9. Suppose the first call to Candidate Correction returns candidate correction 3.

Recall that the corresponding fault-set is ∆ = {b1, b2}.
Now, let us assume that the agent selects component b1 from ∆ and determines

that it is not faulty. Observation obs(¬ab(b1), 1) is added to the recorded history,

corr found is set to false and the program calls Candidate Correction again.

Suppose that, this time, Candidate Correction returns candidate correction 1.

The fault-set of candidate correction 1 is {batt}. The agent will test batt, find it

to be faulty, add the observation obs(ab(batt), 1) to the recorded history, and return

candidate correction 1.

If, however, according to our actual evolution, W , the bulb is still ok, the algorithm

will eventually return 〈∅, ∅〉, meaning that no correction was found (it is easy to see

that any candidate correction in this scenario must have either {batt} or {b1, b2} as

fault-sets).

Similarly to diagnosis, it is often important to limit the corrections found by the

reasoning algorithm to a set of “best” correction. CR-Prolog’s cr-rules and preferences

can be used for this purpose to specify correction selection criteria. We will discuss

this topic in Section 8.3.

The next chapter introduces syntax and semantics of CR-Prolog.

135

CHAPTER VII

CR-PROLOG

CR-Prolog [4, 6] is an extension of A-Prolog resulting from the introduction of

consistency-restoring rules and preferences over them. CR-Prolog is used in this

dissertation for the formalization of the reasoning components because it allows to

elegantly formalize various sophisticated reasoning tasks. We start by describing basic

CR-Prolog, which, similarly to basic A-Prolog (see Section 2.2), does not include s-

atoms.

7.1 Syntax of basic CR-Prolog

The syntax of basic CR-Prolog is defined as follows:

Definition 7.1.1. A basic regular rule is a statement of the form:

r : h1 or h2 or . . . or hk ← l1, l2, . . . lm, not lm+1, not lm+2, . . . , ln. (7.1)

where r is a term representing the name of the rule, l1, . . . , lm are literals, and hi’s

and lm+1, . . . , ln are plain literals.

Basic regular rules have the same informal reading as the basic rules of A-Prolog.

Definition 7.1.2. A basic consistency-restoring rule (or cr-rule) is a statement of

the form:

r : h1 or h2 or . . . or hk
+← l1, l2, . . . lm, not lm+1, not lm+2, . . . , ln. (7.2)

where r, hi’s and li’s are as before.

The intuitive reading of a basic cr-rule is “if you believe l1, . . . , lm and have no

reason to believe lm+1, . . . , ln, then you may possibly believe one of h1, . . . , hk.” The

implicit assumption is that this possibility is used as little as possible.

Definition 7.1.3. A basic CR-Prolog program is a pair 〈Σ, Π〉, where Σ is a signature

and Π is a set of basic regular rules and basic cr-rules.

136

Given a basic CR-Prolog program, Π, the regular part of Π is the set of its basic

regular rules, and is denoted by reg(Π). The set of basic cr-rules of Π is denoted by

cr(Π).

Example 7.1.1. Consider the following program:

r1 : p or q
+← not r.

s.

The regular part of the program, consisting of fact s, is consistent. Hence, the is no

reason to apply the cr-rule, and the agent is only forced to believe s.

Example 7.1.2. Now consider the program:

r1 : p or q
+← not r.

s.

← not p, not q.

This time, the regular part of the program is inconsistent. The cr-rule can be applied

to restore consistency, and the agent is forced to believe either {s, p} or {s, q}.

It is also possible to have cases when different cr-rules can be applied, like in the

following example.

Example 7.1.3.

r1 : p
+← not r.

r2 : q
+← not r.

s.

← not p, not q.

Again, the regular part of the program is inconsistent. Consistency can be restored by

applying either r1 or r2, or both. Since cr-rules should be applied as little as possible,

the last case is not considered. Hence, the agent is forced to believe either {s, p} or

{s, q}.

137

When different cr-rules are applicable, it is possible to specify preferences on which

one should be applied by means of atoms of the form

prefer(r1, r2),

where r1, r2 are names of cr-rules. The atom informally says “do not consider solutions

obtained using r2 unless no solution can be found using r1.” The next example shows

the effect of the introduction of preferences in the program from Example 7.1.3.

Example 7.1.4.

r1 : p
+← not r.

r2 : q
+← not r.

prefer(r1, r2).

s.

← not p, not q.

The preference prevents the agent from applying r2 unless no solution can be found

using r1. We have seen already that r1 is sufficient to restore consistency. Hence, the

agent has only one set of beliefs, {s, p}

Notice that our reading of the preference atom prefer(r1, r2) rules out solutions

in which r1 and r2 are applied simultaneously, as the use of r2 is allowed only if no

solution is obtained by applying r1.

7.2 Semantics of basic CR-Prolog

In this section, we define the semantics of basic CR-Prolog. In the following

discussion, Π1 denotes a basic CR-Prolog program, Π0 the regular part of Π1, and

R the cr-rules of Π1. Also, for every R′ ⊆ R, α(R′) denotes the set of regular rules

obtained from R′ by replacing every connective
+← with ←. Notice that the regular

part of any basic CR-Prolog program is a basic A-Prolog program.

The following definition defines the transitive closure of relation prefer, which

will be used later in the definition of the semantics.

138

Definition 7.2.1. For every set of literals, S, from the signature of Π1, and every

r1,r2 from R, prefS(r1, r2) is true iff

prefer(r1, r2) ∈ S, or

∃r3 ∈ R prefer(r1, r3) ∈ S ∧ prefS(r3, r2).

The semantics of CR-Prolog is given in three steps. Intuitively, in the first step

we look for combinations of cr-rules that restore consistency. Preferences are not

considered, with the exception that solutions deriving from the simultaneous use of

two cr-rules between which a preference exists are discarded.

Definition 7.2.2. 〈S1, R1〉 is a view of Π1 if:

1. S1 is an answer set of Π0 ∪ α(R1), and

2. for every r1, r2 such that prefS1(r1, r2), {r1, r2} 6⊆ R1, and

3. for every R2 ⊂ R1, S1 is not an answer set of Π0 ∪ α(R2).

The second consists in selecting the best views with respect to the preferences

specified. Notice that the definitions are made more complex by the fact if dynamic

preferences are specified, different views can contain different preferences. The in-

tuition here is that we consider only preferences on which there is agreement in the

views under consideration.

Definition 7.2.3. For every pair of views of Π1, 〈S1, R1〉 and 〈S2, R2〉, 〈S1, R1〉 dom-

inates 〈S2, R2〉 if there exist r1, r2 such that r1 ∈ R1, r2 ∈ R2, and prefS1∩S2(r1, r2).

Definition 7.2.4. A view, 〈S1, R1〉, is a candidate answer set of Π1 if, for every view

〈S2, R2〉 of Π1, 〈S2, R2〉 does not dominate 〈S1, R1〉.

Finally, we select the candidate answer sets that are obtained by applying a min-

imal set of cr-rules.

Definition 7.2.5. A set of literals, S1, is an answer set of Π1 if:

139

1. there exists R1 ⊆ R such that 〈S1, R1〉 is a candidate answer set of Π1, and

2. for every candidate answer set, 〈S2, R2〉, of Π1, R2 6⊂ R1.

7.3 CR-Prolog

Following the approach used in Section 2.2, we extend basic CR-Prolog by allowing

s-atoms in the head of both regular and cr-rules. We call the resulting language CR-

Prolog.

Definition 7.3.1. A regular rule of CR-Prolog is a statement of the form (7.1), where

r and li’s are as before, and either (1) k = 1 and h1 is a s-atom, or (2) all hi’s are

plain literals.

Definition 7.3.2. A cr-rule of CR-Prolog is a statement of the form (7.2), where r,

li’s and hi’s are like in Definition 7.3.1.

Definition 7.3.3. A CR-Prolog program is a pair 〈Σ, Π〉, where Σ is a signature and

Π is a set of regular rules and cr-rules.

As for basic CR-Prolog programs, reg(Π) and cr(Π) denote the regular part and

the set of cr-rules of Π. Notice that the regular part of a CR-Prolog program is an

A-Prolog program (rather than a basic A-Prolog program).

The semantics of CR-Prolog is a straightforward extension of the semantics of

basic CR-Prolog, obtained by considering program Π0 ∪ α(R1) in Definition 7.2.2 an

A-Prolog program, rather than a basic A-Prolog program.

140

CHAPTER VIII

CR-PROLOG BASED REASONING ALGORITHMS

8.1 CR-Prolog and the Selection of Best Plans

In several cases, “best” plans are selected based on criteria different from just

the minimization of their length. An interesting case is when we are given a set of

requirements that plans should satisfy if at all possible (e.g., “if at all possible, do

not skip lunch”). Such requirements are referred to as soft requirements [2]. In our

approach, the satisfaction of soft requirements is checked for in the test phase of the

search.

To the best of our knowledge, there is no general, elegant way to encode soft

requirements using A-Prolog. For this reason, their encoding will be based on cr-

rules and preferences statements of CR-Prolog.

In its simplest form, a soft requirement is encoded by a constraint and a cr-rule.

The body of the constraint contains:

• the encoding of the condition that plans should satisfy, according to the soft

requirement; the encoding is such that, if the requirement is not met, the body

of the constraint is satisfied ;

• a condition (the inhibitor) that allows to stop the application of the constraint,

in case the soft requirement has to be violated.

For example, a possible constraint for the soft requirement “if at all possible, do not

skip lunch” is:

← skip(lunch), not allowed(skip(lunch)).

which informally says that it is normally impossible to skip lunch.

The cr-rule is used to say that, under some conditions, the constraint may possibly

be inhibited, but its inhibition should be a rare occurrence. The cr-rule for the soft

requirement above is:

allowed(skip(lunch))
+← .

141

which intuitively says that one may be possibly allowed to skip lunch.

If plans exist that do not violate the requirement, the cr-rule is not used. How-

ever, if no such plan exists, the cr-rule is used to conclude that skipping lunch is al-

lowed. This inhibits the constraint, and allows the computation of plans violating

the requirement.

For another example, consider the encoding of the soft requirement “it is normally

impossible to skip lunch; however, if you had a big breakfast, you may possibly be

allowed to skip it,” which consists of the rules:

← skip(lunch), not allowed(skip(lunch)).

allowed(skip(lunch))
+← had(big breakfast).

The cr-rule informally says that, if one had a big breakfast, he may possibly be allowed

to skip lunch.

When several soft requirements are specified, one is often interested in ranking

them in order of preference, so that the most preferred soft requirements are the

ones that are less likely to be violated. Preferences statements of CR-Prolog provide

a convenient way to encode such preferences. For example, consider the two soft

requirements:

• if at all possible, do not skip lunch;

• if at all possible, do not skip dinner;

together with the preference “skipping lunch is preferred over skipping dinner.” The

soft requirements can be encoded as before:

← skip(lunch), not allowed(skip(lunch)).

skipl : allowed(skip(lunch))
+← .

← skip(dinner), not allowed(skip(dinner)).

skipd : allowed(skip(dinner))
+← .

142

The preference is encoded by the following rule:

prefer(skipl, skipd).

which says that (if one has to skip either dinner or lunch) skipping dinner should

be considered only if skipping lunch is not possible. It is important to stress that

preference statements of CR-Prolog allow to encode more complex criteria than the

one above, e.g. dynamic preferences such as “if you had a big breakfast, it is better

for you to skip lunch than skipping dinner; otherwise, skipping dinner is preferred.”

Such preference can be encoded in CR-Prolog with the rules:

prefer(skipl, skipd)← had(big breakfast).

prefer(skipd, skipl)← not had(big breakfast).

The algorithm for the planning component that can deal with soft requirements is

based on the observation that computing the plans (with k compound agent actions)

satisfying a set of soft requirements can be reduced to finding the answer sets of the

program:

Plan1(D, g, k) =

α(D) ∪ AGEN(k) ∪GOALTEST (g, k) ∪ SOFTREQ

where SOFTREQ is the CR-Prolog encoding of the soft requirements.

Soft requirements and preferences over them have an immediate application in

USA-Advisor (see Section 6.1.1). For example, the left and right subsystems of the

RCS are actually connected by the so-called crossfeed – a sequence of pipes connecting

the plumbing of the two subsystems. The crossfeed is valve-controlled, and is intended

to be used when one of the two subsystems is affected by faults preventing the use

of the propellant from its own tanks. It is NASA’s policy to use the crossfeed as

sparingly as possible, to keep the level of propellant in the two subsystems balanced.

This policy can of course be seen as a soft requirement, “avoid the use of the crossfeed

if at all possible.” Another example of the use of soft requirements for USA-Advisor

is the encoding of the policy that “computer commands should be avoided if at all

143

possible.” (This policy is motivated by the fact that, normally, issuing a computer

command requires preparing and uploading a patch of the software of the on-board

computer.) The CR-Prolog encoding of the two soft requirements is:

rxf (R, T) : allowed(xfeed(R, T))
+← subsystem(R).

← subsystem(R), action of(A,R),

occurs(A, T),

opens xfeed valve(A),

not allowed(xfeed(R, T)).

rccs(R, T) : allowed(ccs(R, T))
+← subsystem(R).

← subsystem(R), action of(A,R),

occur(A, T),

sends computer command(A),

not allowed(ccs(R, T)).

The first cr-rule says that the use of the crossfeed may possibly be allowed at any

time step T . The corresponding constraint says that it is impossible for action A of

subsystem R to occur at T if A opens a crossfeed valve, and the use of the crossfeed

is not allowed in R at time step T . The second cr-rule says that computer commands

may possibly be allowed at any time step T . The constraint says that it is impossible

for action A of subsystem R to occur at T if A sends a computer command and

computer commands are not allowed in R at time step T .

It is of course possible to state preferences between the two soft requirements. For

example, if the flight controllers decide that modifying the software of the Shuttle’s

computer is preferable to losing the balance of the propellant between the left and

right subsystems, the following rule can be added to the planner:

prefer(rccs(R2, T2), rxf (R1, T1)).

144

As we showed earlier, it is also possible to express dynamic preferences. For example,

the rules:

prefer(rccs(R2, T2), rxf (R1, T1))← computer reliable.

prefer(rxf (R1, T1), rccs(R2, T2))← ¬computer reliable.

say that the use of computer commands is preferred to the use of the crossfeed only if

the on-board computer is reliable; if the computer is unreliable, instead, the preference

is reversed.

Soft requirements can also be used to avoid the generation of irrelevant actions,

typical of planning domains in which the goal is divided in independent subgoals, and

the execution of parallel actions is allowed. Consider what happens in USA-Advisor if

the goal requires that some jets in the forward and left subsystems be set ready to fire,

and achieving the subgoal for the forward subsystem takes nf steps, while achieving

the subgoal for the left subsystem takes nl steps, with nf < nl. By inspecting the

selection rule used in the planning module, one can see that a plan in which the

subgoal for the forward subsystem is achieved at step nf is considered equivalent to

one in which the same subgoal is achieved at nf + 1. For this reason, a plan in which

an extra, irrelevant action is performed on the forward subsystem at n′ < nf + 1 is

as likely to be returned as the plan that achieves the subgoal at step nf . Even using

algorithm PC0 does not help in this case, because the subgoal for the left subsystem

forces the shortest plan to contain nl steps.

Soft requirements can help to avoid the generation of irrelevant actions, so that, if

a plan of length nf + 1 is generated for the forward subsystem, at least it is possible

to guarantee that no extra action will occur at step n′. The soft requirement to

avoid irrelevant actions states that “performing actions should be avoided if at all

145

possible.”, and is encoded by the rules:

rshort(R, T) : allowed(execute action(R, T))
+← subsystem(R).

← subsystem(R),

action of(A,R),

occurs(A, T),

not allowed(execute action(R, T)).

The cr-rule says that, at any step T of the plan for subsystem R, the agent may

be possibly allowed to perform actions. The constraint says that it is impossible for

action A of subsystem R to occur at step T if the agent is not allowed to execute

actions on subsystem R at step T .

Experimental results confirm that the plans generated by the extended version of

USA-Advisor (called USA-Smart) are of a significantly higher quality than the plans

generated by USA-Advisor even without the introduction of preferences.

We have applied USA-Smart to 800 problem instances from [57], namely the

instances with 3, 5, 8, and 10 mechanical faults, respectively, and no electrical faults.

(For these experiments, we did not include in the planner the preference statements

on crossfeed and computer commands.)

The planning algorithm iteratively invokes the reasoning system with maximum

plan length L, checks if a model is returned, and iterates after incrementing L if

no model was found. If no plans are found that are 10 or less time steps long, the

algorithm terminates and returns no solution. This approach guarantees that plans

found by the algorithm are the shortest (in term of number of time steps between

the first and the last action in the plan). Notice that the current implementation of

CR-Prolog’s inference engine returns the models ordered by the number of (ground)

cr-rules used to obtain the model, with the model that uses the least cr-rules returned

first. Hence, the plan returned by the algorithm is both the shortest and the one that

uses the minimum number of cr-rules.

146

Overall, computer commands were used 27 times, as opposed to 1831 computer

commands generated by USA-Advisor. The crossfeed was used 10 times by USA-

Smart, and 187 times by USA-Advisor. Moreover, in 327 cases over 800, USA-Smart

generated plans that contained less actions than the plans found by USA-Advisor (as

expected, in no occasion they were longer). The total number of irrelevant actions

avoided by USA-Smart was 577, which is about 12% of the total number of actions

used by USA-Advisor (4601).

In spite of the improvement in the quality of plans, the time required by USA-

Smart to compute a plan (or prove the absence of a solution) was still largely accept-

able. Many plans were found in seconds; most were found in less than 2 minutes, and

the program almost always returned an answer in less than 20 minutes (the maximum

that the Shuttle experts consider acceptable). The only exception consists of about

10 cases, when planning took a few hours. These outliers were most likely due to the

fact that the inference engine for CR-Prolog is still somewhat unoptimized.

8.2 The Selection of Best Diagnoses

As pointed out in Section 6.2.1, the A-Prolog based diagnostic algorithms pre-

sented earlier always return reasonable diagnoses, but often find too many of them.

To narrow the search to “best” diagnoses, we have developed a technique based on

CR-Prolog that allows the specification of preferences among diagnoses. We couldn’t

find any general, elegant way to achieve the same result with A-Prolog alone.

The technique consists in viewing exogenous actions as rare events, and using cr-

rules to specify that the exogenous actions can occur, although rarely. For example,

going back to the electrical circuit from Section 6.2.1, the fact that a power surge

may possibly occur at any time is encoded by the cr-rule:

r(srg, T) : o(srg, T)
+← .

Of course the body of the cr-rule needn’t be empty. If we are given information that

147

power surges occur only during storms, we can modify the cr-rule accordingly:

r(srg, T) : o(srg, T)
+← h(storm, T).

The new rule says that a power surge may possibly occur whenever there is a storm,

although this is a rare event.

It is worth stressing that, even without introducing preferences, encoding exoge-

nous actions with CR-Prolog yields a substantial improvement in the quality of di-

agnoses. In fact, the semantics of CR-Prolog is such that only minimal diagnoses (in

a set-theoretical sense) are found. We will come back to this topic later, when we

consider the advantages of using CR-Prolog over alternative approaches.

The selection of “best” diagnoses is achieved by specifying the relative likelihood of

exogenous actions using preferences on the corresponding cr-rules. For example, the

information that bulb blow-ups and surges are exogenous actions and that blow-ups

are more likely than power surges can be encoded by the rules:

r(srg, T) : o(srg, T)
+← .

r(brk, T) : o(brk, T)
+← .

% blow-ups are more likely than surges at any time step.

more likely(brk, srg, T).

prefer(r(A1, T), r(A2, T))← more likely(A1, A2, T).

The first two rules specify the available exogenous actions. The third rule encodes

the relative likelihood of the two actions. The last rule states that, if A1 is more likely

than A2, diagnoses containing the occurrence of A2 at step T must not be considered

if diagnoses exist that contain A1 at step T .”

As shown in the previous example, the availability of dynamic preferences allows

the encoding of rather complex likelihood relations. In the next example, we formalize

148

the fact that:

“Power surges are more likely than blow-ups during storms,

but less likely otherwise.”
(8.1)

The second part of statement (8.1) is encoded by a rather standard default, together

with an axiom stating that likelihood is an anti-symmetric relation; the first part of

(8.1) is encoded as a strong exception to the default.

%% normally, blow-ups are more likely than power surges.

more likely(brk, srg, T)← not exception(d(brk, srg, T)),

not ¬more likely(brk, srg, T).

%% relative likelihood is an anti-symmetric relation

¬more likely(A2, A1, T)← more likely(A1, A2, T).

%% surges are more likely than blow-ups during storms.

more likely(srg, brk, T)← h(storm, T).

It is worth stressing that such a formalization is made possible by the use of the

dynamic preference:

prefer(r(A1, T), r(A2, T))← more likely(A1, A2, T).

The use of cr-rules and preferences can be easily integrated into the algorithms

presented in Section 6.2.1. Recall that, there, the computation of candidate diagnoses

of symptom S was reduced to finding the answer sets of diagnostic program (6.5):

D0(S) = Conf(S) ∪DM0.

Let us now denote by DMcr the set of rules specifying exogenous actions and their

relative likelihood. Then, candidate diagnoses of symptom S can be computed by

means of the diagnostic program:

Dcr(S) = Conf(S) ∪DMcr. (8.2)

149

The main advantage of this approach is the substantial increase in quality of the

candidate diagnoses and diagnoses.

Let us re-consider the computation of candidate diagnoses. Intuitively, it seems

natural that a rational agent should at first consider only minimal candidate diag-

noses.

However, program D0(S) does not allow to give any preference to such diagnoses.

Computing minimal candidate diagnoses in A-Prolog appears to require non-trivial

modifications of the procedural part of the reasoning algorithm. This is in contrast

with our policy that the relevant part of the reasoning process should be performed

by declarative means, with the procedural code being used as “glue.”

On the other hand, because of the semantics of CR-Prolog, Dcr(S) automatically

finds minimal candidate diagnoses, without the need for additions to the procedu-

ral code. This allows the programmer to focus on the really important knowledge

representation issues.

The use of preferences allows for a further improvement of the quality of diagnoses.

In the example above, we have shown that the availability of dynamic preferences

allows for substantially more flexible reasoning. Overall, the introduction of CR-

Prolog in diagnosis results in an agent control loop that is entirely declarative and

yet computes “best” diagnoses. Notice that, since the preference relation is transitive

and anti-symmetric, normally preference specifications are reasonably compact.

Although other recent extensions of A-Prolog can be used to improve the quality

of diagnoses, it is not clear whether they yield the same level of improvement. For

example, dlv’s weak constraints [17, 18] appear to yield unintuitive results when

preferences over exogenous actions are combined with uncertainty about the initial

situation. Ordered disjunction [14, 15, 16] appears to have problems with certain

types of dynamic preferences, as well as to sometimes produce unintuitive results when

conflicting preferences are present in the program. We will show later a comparison

with representative approaches from the literature.

Our CR-Prolog based diagnostic algorithms have been tested on the RCS model

150

from USA-Advisor with good results. The diagnostic module included the specifica-

tion of 231 exogenous actions (to simplify the modeling, actions are allowed to occur

only at the first time step). Candidate diagnoses for various diagnostic problems were

computed in a few seconds. We also tested the consequences of adding information

on the relative likelihood of the exogenous actions. We used collections of statements

such as:

% It is more likely for a valve to leak than to be stuck.

%

more likely(leak(V alve), stuck(V alve), T).

% If switch S controls valve V , it is more likely for V

% to be stuck than for S to be stuck.

more likely(stuck(V alve), stuck(Switch), T)← controls(Switch, V alve).

Again, a candidate diagnosis was usually found in less than 15 seconds, in spite of

the large number of ground instances of the preference statements.

8.3 The Selection of Best Corrections

The introduction of CR-Prolog in the learning modules proceeds along the same

lines of diagnosis. The fact that a precondition or a law is missing is a modeled as

a rare event, and encoded in CR-Prolog as follows. These cr-rules are intended to

151

replace the corresponding selection rules.

% Any fresh constant L can denote a law that

% is missing from the action description.

r(missing law(L)) : missing law(L)
+← new law name(L).

% Any AL-literal LNAME can be possibly missing from

% the body of any law L.

r(missing prec(LNAME, N, L)) :

missing prec(LNAME, N,L)
+← law(L),

prec name and pos(LNAME, N, L).

Using cr-rules instead of selection rules for the selection process substantially limits

the number of corrections found, as by the semantics of CR-Prolog only

set-theoretically minimal (w.r.t. the cr-rules used) corrections are returned.

To further improve the quality of the solutions returned, preferences can be spec-

ified on the application of cr-rules. For example, consider the rule:

prefer(r(missing prec(PN1, N1, L)),

r(missing prec(PN2, N2, L)))← static(PN1), not static(PN2).

where not static(PN2) is used as an abbreviation of the closed world assumption on

relation static. The rule says that fluent literals should not be hypothesized to be

missing from L unless no solution can be found by considering only missing statics in

L. This corresponds to the intuition that, in specializing L, one may want to ground

its variables rather than adding new fluent literals to its body. Notice that the fact

that CR-Prolog can be used to express dynamic preferences is quite important here.

In fact, criteria like the one above are typically used only under some condition, e.g.

if the ratio of fluent literal and static preconditions in L is above some threshold.

As for diagnosis, cr-rules and preferences can be easily integrated into the

algorithms presented in Section 6.2.2. Let LMcr be obtained from learning module

LM1 by replacing the selection rules that select missing prec(LNAME, N, L) and

152

missing law(L) with the cr-rules above. Let also LMcr contain a set of preference

statements (including any auxiliary definition). Then, candidate corrections of

symptom S can be computed by the learning program:

Lcr(AD,S, n) = χ(AD, n) ∪Hn ∪OcT
n ∪R ∪ LMcr.

153

CHAPTER IX

RELATED WORK

9.1 Agent Architectures and Execution Monitoring

An interesting approach for the construction of rational agents is the Golog ap-

proach, described in [70, 71]. There, the domain model is axiomatized using situa-

tion calculus [64], a knowledge representation framework formulated in the classical

predicate logic. The agent’s behavior, with respect to the selection of the actions

that achieve the goal, is determined by programs written in Golog, an agent program-

ming language based on situation calculus. Golog programs can be seen as defining

complex actions in terms of the set of primitive actions from the axiomatization of

the domain. For example, the following Golog program defines the complex action

makeOneTower(z), which creates a single tower of blocks on top of block z (we as-

sume that primitive actions startMove and endMove are part of the situation calcu-

lus formalization of the domain). Symbol π denotes non-deterministic assignment of

values to the variables in its scope.

proc makeOneTower(z)

¬(∃y).y 6= z ∧ clear(y)? |
(π x, t)[startMove(x, z, t) ;

(π t′)endMove(x, z, t′) ; makeOneTower(x)]

endProc

Typically, the goal is defined as the successful execution of a complex action. Planning

is reduced to finding a constructive proof that the complex action can be executed

from the initial situation. For example, plans that achieve the goal of building one

tower on top of block z are found by proving:

(∃s)Do(makeOneTower(z), S0, s)

where S0 is the term associated with the initial situation and Do(δ, s, s′) is a relation

whose intuitive meaning is that s′ is one of the situations reached by evaluating the

154

program δ beginning in situation s.

The agent loop in the Golog approach can be summarized as follows:

Input: a Golog program, δ, to be executed

Steps:

1. observe the environment;

2. analyze any unexpected observations and modify δ if necessary;

3. execute the next primitive action, as prescribed by δ.

The structure of the loop stresses the central role of the Golog program: the agent is in

some sense “pre-programmed”, as opposed to the “fully deliberative” agent described

in this dissertation.

The choice of knowledge representation formalism adopted to axiomatize the

domain substantially influences the class of domains that the agent can deal with.

In this respect, there are several important aspects in which A-Prolog appears to

differ from situation calculus. First of all, to the best of our knowledge, in situation

calculus it is not possible to encode dependencies among fluents that cause

non-determinism. As an example, consider the following action description:

s1 : caused p if r,¬q.

s2 : caused q if r,¬p.

{a} causes r.

The execution of a in state {¬r,¬p,¬q}, yields two possible successor states: {r, p,¬q}
and {r,¬p, q}. In the first case, ¬q stays true by inertia, and law s1 forces p to become

true. The second case is symmetrical to the first, with ¬p staying true by inertia.

The second important difference between A-Prolog and situation calculus is that

the solution to the frame problem adopted in the latter formalism makes it difficult

to encode recursive definitions. For instance, situation calculus is not suitable for

155

the encoding of relation pressurized by, presented in the description of the Plumbing

Module of USA-Advisor in Section 6.1.1.

The third important difference is that A-Prolog is non-monotonic, while situation

calculus is monotonic. Although monotonic logic has the advantage of being the

best studied logic formalism, non-monotonic logics like A-Prolog typically provide for

greater elaboration tolerance and easier updates.

The encoding of control knowledge also substantially differs between the two ap-

proaches. In the Golog approach, control knowledge is encoded in Golog, which is

essentially a procedural language. In A-Prolog, control knowledge is expressed declar-

atively, typically in form of constraints.

Moreover, it is not clear whether the agent loop in the Golog approach can work

at all if no control knowledge is given, i.e. if the Golog program consists only of a

test that checks whether a particular situation has been reached. The A-Prolog based

agent loop is designed to accept any amount of control knowledge, from no control

knowledge to very detailed, Golog-style control knowledge.

Finally, there is also a difference with respect to the type of observations gath-

ered by the agent, and how they are used in the agent loop. In our approach, ob-

servations are statements on whether fluents are true or false at the current moment

of time. The agent deals with unexpected observations by explaining them, i.e. by

determining which exogenous actions may have caused them, and by re-planning ac-

cordingly. In the Golog approach, observations consist either of the occurrence of

exogenous actions or of tests on conditions (it seems that the latter are similar to

our view of observations). Given the current observations, the agent finds a corrected

Golog program that allow the achievement of the goal. No attempt to explain the

observations is made. We believe that explaining the observations allows the agent

to more successfully interact with the environment, both in the current time step and

in the future, by exploiting knowledge on the causes of the observations. Also notice

that, when occurrences of exogenous actions (i.e. explanations, in the sense of the

term used in this dissertation) are directly observed by the Golog agent, the algo-

156

rithm only appears to be designed to accept observations on actions occurred after

the latest agent action. This differs from our approach, in which the agent can deal

with the occurrence of exogenous actions at any time in the past.

An approach to monitoring the execution of actions in intelligent agents is de-

scribed in [26, 27, 28], where a tool called kmonitor is introduced.

kmonitor is a tool for monitoring plan execution in non-deterministic

environments encoded in action language K. Intuitively, kmonitor monitors the

execution of a plan in a domain with non-deterministic actions and ensures that the

agent is moving along one of a set of preferred trajectories. To keep monitoring

overhead low, the agent observes the environment only at certain checkpoints.

Checkpoints are computed based on a checkpoints policy, specified by a logic

program.

When discrepancies between the observed and expected evolution of the environ-

ment are detected, the tool determines the step at which the trajectories separated

and applies execution recovery techniques, such as plan reversal.

The kmonitor project has been so far focused on execution monitoring and

recovery. It is not clear which parts of our loop the agent architecture includes.

The approach differs from ours in many respects. First of all, it is focused on

non-deterministic transition diagrams, while we concentrate on deterministic action

descriptions. As a consequence, kmonitor deals with possible plans rather than

plans, where by possible plans we mean sequences of actions that may achieve the

goal, but may as well fail, depending on the actual effects of the actions.

Also, kmonitor does not allow interferences of the environment by means of ex-

ogenous actions. Only “unwanted” observations deriving from the non-deterministic

effects of actions are considered. That appears to limit the applicability of the ap-

proach in situations in which unexpected observations are caused by physical phe-

nomena or by other agents. This view results in a type of diagnostic reasoning quite

different from ours. In kmonitor, diagnosing a discrepancy means finding a point of

failure that justifies it, where a point of failure is intuitively a branching point in the

157

transition diagram at which the observed trajectory and the expected one possibly

separated.

Finally, the kmonitor approach does not describe how preferred trajectories

are specified, while our approach includes a methodology for the encoding of soft

requirements. It is interesting to see if CR-Prolog or prioritized default theories from

[60] can be adopted to specify preferred trajectories in kmonitor.

Other agent architectures are derived from the research on robotics, such as 3T and

MDS [12, 24, 55]. All such architectures are characterized by somewhat less formal

foundations, and usually by the lack of a precise definition of state. Our agents appear

to be substantially more deliberative than theirs. In most of these architectures,

intelligent agent behavior emerges from the interaction of relatively simple software

components that react to the observations on the current state by performing actions

according to a fixed mapping. The components usually maintain either a rather

limited history and model of the domain or even none at all. On the other hand,

these architectures are quite successful in the interaction with physical environments

by means of (even relatively unreliable) sensors and actuators. Although the resulting

behavior is often surprisingly intelligent – especially considered the simplicity of the

software components – we do not see how truly deliberative behavior can be achieved

just by the interaction of non-deliberative components.

9.2 Conditions for Determinism of Action Descriptions

[9] introduces a condition for the determinism of action descriptions that extends

the one from [8]. The new condition is based on the notion of separability of an action

description, defined as follows (in this section, the term action denotes singleton

compound actions).

Let R be the collection of the state constraints of action description AD. For any

action a and state σ, E∗(a, σ) denotes the closure of the direct effects of a in σ with

respect to the laws in R.

Action description AD is separable if, for any a and σ such that a is executable

158

in σ, if r ∈ R and body(r) ∩ E∗(a, σ) 6= ∅, then body(r) ⊆ E∗(a, σ).

Proposition 13.10.1 in [9] states that “any separable action description is deter-

ministic.”

This condition for checking the determinism of action descriptions differs from

ours in two respects. First of all, algorithms that check the condition are likely to be

more computationally complex than those presented in Chapter V. In fact, although

no algorithm is described in [9], the condition appears to involve tests on all states of

the transition diagram (as well as on the executability of the actions). It is unlikely

that this can be done in polynomial time. On the other hand, we have proven that

our test for the safety of dep(AD) has polynomial complexity.

Furthermore, as the following examples show, the test from [9] appears to miss

action descriptions that our tests correctly identify as deterministic.

Example 9.2.1. Consider the following action description:

w1 : q if ¬r,¬p.
w2 : r if ¬q, p.

a causes p.

From Chapter V, we know that this action description is deterministic, and that it

can be correctly identified using dependency graphs (but not with simplified dependency

graphs).

Now, let us check if the action description is separable. Let us consider state

σ = {p, q, r} and action a. Set E∗(a, σ) is {p}, and

E∗(a, σ) ∩ body(w2) 6= ∅ but body(w2) 6⊆ E∗(a, σ).

Since the action description is not separable, it is not identified as deterministic.

The next example shows that the condition from [9] is even stronger than our

condition on the simplified dependency graph.

159

Example 9.2.2. Consider the following action description.

w1 : p if q, s.

w2 : t if s.

a causes s.

Obviously the action description is deterministic, and it can be identified as such by

testing either the dependency graph or the simplified dependency graph.

On the other hand, consider state σ = {¬s,¬t,¬p,¬q} and action a. We obtain

E∗(a, σ) = {s, t}. Therefore,

E∗(a, σ) ∩ body(w1) 6= ∅ but body(w1) 6⊆ E∗(a, σ),

and the action description cannot be identified as deterministic by the separability

test.

9.3 Planning

Our work on planning extends the study from [57] by embedding those planning

algorithms in our agent architecture. We also introduced the use of CR-Prolog in

planning, and in particular the use of soft requirements.

Our use of CR-Prolog to encode soft requirements (see Chapter VIII) presents

similarities with the use of prioritized default theories in [60]. There, the authors

encode preferences by means of prioritized default theories. The language used allows

the specification of preferences both on actions and final states.

The main difference between their approach and ours lies in fact that CR-Prolog

is a general tool that allows the encoding of preferences of various types, while their

preferences are designed only to be used for planning with action languages. The

wider applicability of CR-Prolog is demonstrated by the fact that cr-rules and prefer-

ences over them have been used in this dissertation to encode both soft requirements,

relative likelihood of exogenous actions, and preferences on the different ways to spe-

cialize laws in the learning process.

160

9.4 Diagnosis

There is a numerous collection of papers on diagnosis many of which substantially

influenced our views on the subject. The roots of our approach go back to [62]

where diagnosis for a static environment were formally defined in logical terms. To

the best of our knowledge the first published extensions of this work to dynamic

domains appeared in [73], where dynamic domains were described in fluent calculus

[75], and in [51] which used situation calculus [37]. Explanation of malfunctioning

of system components in terms of unobserved exogenous actions was first clearly

articulated in [52]. Generalization and extensions of these ideas [11] which specifies

dynamic domains in action language L, can be viewed as a starting point of the work

presented in this dissertation. The use of a simpler action language AL allowed us

to substantially simplify the basic definitions of [11] and to reduce the computation

of diagnosis to finding stable models of logic programs. As a result we were able to

incorporate diagnostic reasoning in a general agent architecture based on the answer

set programming paradigm, and to combine diagnostics with planning and other

activities of a reasoning agent. On another hand [11] addresses some questions which

are not fully addressed by our work. In particular, the underlying action language

of [11] allows non-deterministic and knowledge-producing actions absent in our work.

While our formulation allows immediate incorporation of the former, incorporation

of the latter seems to substantially increase conceptual complexity of the formalism.

This is of course the case in [11] too but we believe that the need for such increase

in complexity remains an open question. Another interesting related work is [58]. In

this paper the authors address the problem of dynamic diagnosis using the notion

of pertinence logic from [19]. The formalism allows to define dynamic diagnosis

which, among other things, can model intermittent faults of the system. As a result

it provides a logical account of the following scenario: Consider a person trying to

shoot a turkey. Suppose that the gun is initially loaded, the agent shoots, observes

that the turkey is not dead, and shoots one more time. Now the turkey is dead. The

pertinence formalism of [58] does not claim inconsistency - it properly determines that

161

the gun has an intermittent fault. Our formalism on another hand is not capable of

modeling this scenario - to do that we need to introduce non-deterministic actions.

Since, in our opinion, the use of pertinence logic substantially complicates action

formalisms it is interesting to see if such use for reasoning with intermittent faults

can always be avoided by introducing non-determinism. Additional comparison of

the action languages based approach to diagnosis with other related approaches can

be found in [11].

A work relevant to our research on diagnosis with CR-Prolog is the introduction

of weak constraints in dlv [17, 18, 20]. Intuitively, a weak constraint is a constraint

that can be violated, if this is needed to obtain an answer set of a program. To each

weak constraint, a weight is assigned, indicating the cost of violating the constraint1.

A preferred answer set of a program with weak constraints is one that minimizes

the sum of the weights of the constraints that the answer set violates. Consider for

example program Πdlv of dlv:

a or b.

:∼ a. [1 :]

:∼ b. [2 :]

where the first weak constraint (denoted by symbol :∼) has weight 1 and the second

has weight 2. In order to satisfy the first rule, the answer sets of Πdlv must violate one

of the constraints. Since violating the first constraint has a lower cost than violating

the second, the preferred answer set of Πdlv is {a}.
Weak constraints are of course similar to our cr-rules and weights can often play

the role of preferences. The main disadvantage of using weak constraints instead of

cr-rules is that weights induce a total order on the weak constraints of the program, as

opposed to the partial order that can be specified on cr-rules. This seems to be a key

difference in the formalization of some forms of common-sense knowledge. Consider

the following specification of relative likelihoods for exogenous actions brk and srg

1To be precise, two different “costs”, weight and level, are assigned to weak constraints, but in

our discussion we only consider the weight, since even levels do not seem to solve the problem.

162

from Section 8.2.

more likely(brk, srg, T)← h(¬storm, T).

more likely(srg, brk, T)← h(storm, T).

and the following collection of observations, Odlv:

hpd(close(s1), 0).

% no information on whether storm is true or false at 0

obs(¬on(b), 1).

obs(¬ab(b), 1).

To the best of our knowledge, there is no formalization of this domain in dlv with

weak constraints, that, given recorded history Odlv, concludes that there are two

possible alternatives compatible with Odlv:

{h(storm, 0), o(srg, 0)}
{h(¬storm, 0), o(srg, 0)}

To see the problem, consider, for example, the following translation of our diagnostic

program in dlv2,

Dwk(S) = Conf(S) ∪DMwk,

where DMwk is:

:∼ o(brk, T), h(storm, 0). [4 :]

:∼ o(srg, T), h(storm, 0). [1 :]

:∼ o(brk, T),¬h(storm, 0). [1 :]

:∼ o(srg, T),¬h(storm, 0). [4 :]

The first two weak constraints say that, if a storm occurred, assuming that action

brk occurred has a cost of 4, while assuming that action srg occurred has a cost of

2To be precise, to be actually used with dlv Dwk would have to be modified so as to remove

all function symbols. Although the process is not difficult, describing it is out of the scope of this

dissertation and will not be discussed.

163

1. The last two weak constraints say that, if a storm did not occur, assuming that

action brk occurred has a cost of 1, while assuming that action srg occurred has a

cost of 4. The selection of particular weights is fairly arbitrary, but it captures the

corresponding dynamic preferences.

The only possible explanation of recorded history Odlv is the occurrence of srg at

time 0. Hence, Dwk produces two candidate answer sets, containing, as expected, the

two set of facts above. Unfortunately, the answer set corresponding to the second

set of facts has a total cost of 4, while the answer set corresponding to the first

explanation has a cost of 1. This forces the agent to prefer the first answer set, and

to assume, without any sufficient reason, the existence of a storm. On the other hand,

the corresponding CR-Prolog diagnostic program returns both intended answers.

There are however some classes of programs of CR-Prolog which can be reduced

to dlv programs with weak constraints. Study of such classes may be useful not only

for improving our understanding of both formalisms, but also for using the efficient

computation engine of dlv for CR-Prolog computations.

9.5 Learning

To the best of our knowledge, ours is the first investigation of the use of A-

Prolog and its extensions to perform inductive learning of action theories. Previous

studies [47, 48], in fact, concentrated on the use of inductive logic programming (ILP)

algorithms to learn action theories. Moreover, there, domain models were obtained

by importing a situation calculus ontology and using default negation to solve the

frame problem.

We believe that, in this context, using A-Prolog instead of ILP techniques has

important advantages. In particular, when ILP is used, particular attention needs

to be paid to the use of default negation in the action theory, as traditional ILP

approaches are not well-suited for these applications. Because of the features of the

semantics of A-Prolog, our approach is not affected by this problem.

Overall, our approach results in more declarative and compact learning modules.

164

This is demonstrated by the fact that, in L1(AD,S, n), the search for corrections is

essentially performed by means of only two selection rules.

Other researchers [65, 66, 59, 72] dealt with the problem of learning A-Prolog rules,

rather than causal laws. From the point of view of the A-Prolog rules being added,

those approaches result in allowing the addition of rules with virtually no syntactic

restrictions. In this dissertation, we consider the simpler task of adding only facts to

the program.

Differently from our work, in those approaches the generation of hypotheses occurs

outside A-Prolog, using procedural, ILP-derived, techniques. It would be interesting

to see if learning of arbitrary A-Prolog rules can be accomplished inside an A-Prolog

program.

The use of a procedural approach for learning has the limitation that extensions

of it are not as straightforward as when A-Prolog is used. As shown in Section 8.3,

our approach can be naturally extended to allow the specification of preferences to

selection of best corrections. It is not clear how the other approaches can be extended

to obtain the same result.

Finally, to the best of our knowledge, all the approaches present in the literature

are static, in the sense that the algorithms are not part of an agent architecture and

(obviously) do not allow testing of the hypotheses by gathering further observations,

like we do in Find Correction.

9.6 CR-Prolog

Programs of CR-Prolog closely resemble knowledge systems of [38] – pairs 〈T,H〉
of non-disjunctive programs in which T represents a background knowledge and H

is a set of candidate hypotheses. Though syntactically and even semantically

similar, the programming methodologies of these two approaches differ considerably.

The background theory T of knowledge system seems to be either a collection of

integrity constraints or a collection of defaults whose credibility is higher than that

of H. This is quite different from the structuring of knowledge advocated in this

165

dissertation. The use of rules from H differ depending on the use of the knowledge

system. The emphasis seems to be on default reasoning, where hypothesis are

interpreted as defaults and hence rules of H are fired whenever possible. This

interferes with the search for explanations, which normally favors some form of

minimality and applies the rules sparingly. There are some suggestions of using

knowledge systems for this purpose by applying a different strategy for the selection

of rules. In our opinion these two types of reasoning are not easily combined

together. (In some cases they may even require a different representation of

knowledge for each of the reasoning tasks.) The notion of knowledge system is

further extended in [67] by introducing priorities over elements of H viewed as

defaults. The new work does not seem to change the methodology of knowledge

representation of the original paper. Consequently even our priority relations are

quite different from each other.

In [14], the author introduces logic programs with ordered disjunction (LPOD).

The semantics of LPOD is based on the notion of preferred answer sets. In later

papers [15, 16], the authors introduce the notion of Pareto-preference and show that

this criterion gives more intuitive results that the other criteria they introduced. For

this reason, here we only consider LPOD under Pareto-preference.

In LPOD, rules are statements of the form:

h1 × h2 × . . .× hk ← l1, . . . , lm, not lm+1, . . . , not ln

where h’s and l’s are literals. The intuitive meaning of such a rule is “whenever the

body is satisfied, if possible believe h1; if h1 is not possible, believe h2; . . .; otherwise,

believe hn.”

The semantics of LPOD is based on an assignment of numerical weights to the

rules of the program, depending on which element of the head is believed (the “best”

the element, the smallest the weight). A weight of 1 is associated to rules whose body

is not satisfied. A ceteris paribus criterion [13] is used to propagate the preference

for higher degrees of satisfaction to preferred answer sets.

166

Unfortunately, ordered disjunction appears to have problems with certain types

of dynamic preferences, as well as to sometimes produce unintuitive results when

conflicting preferences are present in the program.

The first type of problems appears to derive from the way weights are assigned to

rules whose body is not satisfied, as pointed out by the following example.3

Example 9.6.1. Consider the story:

“John wants to go to the movies, if possible; otherwise, he will watch tv. If he goes

to the movies then wants to have popcorn if possible; otherwise, he will have candy.

Now popcorn is not available.”

The story can be formalized in LPOD as follows:

% John prefers to go to a movie over watching tv.

movie× tv.

% At the movies, he prefers eating popcorn over candy.

popcorn× candy ← movie.

% Popcorn is not available.

¬popcorn.

Intuitively, John should prefer going to the movies. Since popcorn is not available,

he will eat candy. Watching tv seems a less acceptable option. Under the LPOD

semantics, however, the above program has two preferred answer sets: {movie, candy}
and {tv}, in contrast to the intuition.

3We thank Richard Watson for noticing the problem with LPOD and suggesting the example.

167

A possible CR-Prolog formalization is:

% John either goes to a movie or watches tv.

rm : movie
+← .

rtv : tv
+← .

← not movie, not tv.

% John prefers to go to a movie over watching tv.

prefer(rm, rtv).

% At the movie, John can eat either popcorn or candy.

rp : popcorn
+← movie.

rc : candy
+← movie.

% ... and must eat one of them.

← not popcorn, not candy, movie.

% At the movie, he prefers eating popcorn over candy.

prefer(rp, rc)← movie.

% Popcorn is not available.

¬popcorn.

This program has a unique answer set,

{¬popcorn, movie, candy},

which corresponds to the intuition.

The other difficulty with LPOD is that unintuitive answers can be returned when

there are conflicts among preferences. The issue derives from the inability of ceteris

paribus preference to make a decision in presence of tradeoffs. Consider the following

example from [13]:

168

• we have four possible choices, a(1),a(2),b(1),b(2);

• we must select one a(i) and one b(i);

• we prefer a(1) to a(2) and b(1) to b(2);

• a(1), b(1) cannot be selected together.

In such a situation, ceteris paribus preference allows to identify {a(1), b(2)} and

{a(2), b(1)} as the best possible solutions, but does not allow to further select

among them. Notice that there is a conflicting condition between the preferences:

the first solution satisfies the first preference, but does not satisfy the second. The

second solution behaves in the opposite way. In LPOD, in such situations, both

solutions are considered valid.

The example can be formalized in LPOD as follows:

a(1)× a(2).

b(1)× b(2).

← a(1), b(1).

As expected, the program has two preferred answer sets: {a(1), b(2)} and {a(2), b(1)}.
On the other hand, in CR-Prolog such conflict situations are resolved by disre-

169

garding both solutions. Hence, the program:

n(1).n(2).

ra(I) : a(I)
+← n(I).

← not a(1), not a(2).

prefer(ra(1), ra(2)).

rb(I) : b(I)
+← n(I).

← not b(1), not b(2).

prefer(rb(1), rb(2)).

← a(1), b(1).

has no answer sets.

The difference between the two semantics depends on the fact that Pareto opti-

mality was introduced to satisfy desires and it looks for a set of solutions that satisfy

as many desires as possible. On the other hand, our preference criterion corresponds

to a more strict reading of the preferences. In this respect, CR-Prolog is more con-

servative than LPOD, in the sense that it does not return an answer unless there is

complete certainty that the answer is correct.

It is not difficult to see that the problem with returning all the conflicting solu-

tions is that it does not allow the user to distinguish between conflicting solutions

and solutions that satisfy all the preferences, thus forcing him to study carefully all

the solutions (somewhat defeating the purpose of automatic computation) when the

consequences of taking the wrong decision are extremely negative.

On the other hand, the fact that CR-Prolog disregards conflicting solutions, guar-

antees that the solutions returned, entirely comply with the preferences. If no solu-

tion is returned, that is likely to mean that the preferences should be revised.

170

CHAPTER X

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

In this dissertation, we have demonstrated the use of answer set programming and

action languages in the design and implementation of intelligent agents.

The result is an agent architecture capable of sophisticated reasoning and inter-

action with the domain. In particular, our agent is able to:

• generate plans, expected to achieve the agent’s goal under reasonable assump-

tions;

• monitor the execution of actions and detect unexpected observations;

• explain unexpected observations by:

– hypothesizing that some event occurred, unobserved, in the past;

– modifying the original description of the domain to match the observations.

We believe that the combination of all these forms of reasoning in a single agent is new

in the literature. Also uncommon is the use of diagnosis in explaining unexpected

observations. Although our notion of learning is similar to inductive learning and

inductive logic programming, to the best of our knowledge this is the first introduction

of answer set based learning, and the first time learning of the laws of an action

language is included in an agent architecture.

We think that this dissertation shows the advantages of the use of these types of

reasoning in an agent architecture. Examples have been given showing the importance

of each reasoning component per se, as well as in combination with the others.

From the point of view of answer set programming, we believe we demonstrated

once again the power and flexibility of the approach and of the associated languages

by showing how an entire, sophisticated agent can be designed upon it. A-Prolog and

171

CR-Prolog were successfully employed in this dissertation for substantially different

tasks, such as:

• Axiomatizing action descriptions and domain histories.

• Encoding reasoning modules.

• Formalizing control knowledge (using constraints) and preferences (with the

new constructs of CR-Prolog).

Thanks to the declarative nature of the languages used, all the tasks resulted in

programs that are easy to both understand, modify and reuse.

As we hope we demonstrated, a major difference between answer set based lan-

guages and other knowledge representation formalisms is that our languages are very

close to the implementation level in spite of being entirely declarative. For this rea-

son, the programs shown in this dissertation are almost directly executable in existing

inference engines.1

The fact that the same domain model is shared by all the reasoning components

is also uncommon in the literature and is another indication of the expressive power

and flexibility of the languages used. Having a unique domain model simplifies both

the design and maintenance of the model.

10.2 Future Work

Our agent architecture can be extended in several directions, and all of them are

intriguing and deserve further investigation. The following is a list of the major steps

that we see as natural continuation of this work.

First of all, we believe that the issue of goal selection needs to be studied carefully.

In particular, it will be interesting to see how, and to what extent, preferences on

goals can be formalized using CR-Prolog.

1Essentially, it is sufficient to introduce a few domain predicates to make them executable in

smodels.

172

Another interesting topic is that of testing in diagnosis and learning. In this

dissertation we have limited testing to abnormality fluents, and have assumed that

all such fluents are observable. A natural extension of this work would consist in

allowing the agent to deal with non-observable fluents, and to allow testing of other

fluents besides abnormality fluents. The first issue has been in part investigated in this

context in [35], but more work is needed in this direction. Testing besides abnormality

fluents, on the other hand, has not been studied, to the best of our knowledge. It

would require a substantially smarter selection of the fluents to be tested, possibly

guided by the comparison of alternative candidate diagnoses.

In this version of the agent architecture, testing is carried out in a dedicated

loop inside the procedural parts of the diagnostic and learning components. As the

tests carried out by the agent get more complex, it will become more important to

introduce testing as a sub-goal in the main observe-think-act loop, rather than having

a separate testing loop in Find Diag and Find Correction.

As the reader may have noticed, in this dissertation there was an asymmetry

between the planning component, and the diagnostic and learning components. The

asymmetry consists in the fact that the former is designed for complete information,

while the latter can deal with incomplete information. It would be interesting to

extend the planning component to deal with incomplete information as well. One

way to accomplish this is by finding conditional plans, i.e. plans that achieve the

goal independently from the missing information. A limitation of this approach is

that in some interesting situations no conditional plan exists. Consider a situation in

which the agent can use one of two doors to exit a room, knows that one of them is

locked, but does not know which one. No conditional plan exists, but still it seems

that a truly autonomous, rational agent should be able to solve the problem. An

alternative approach to planning that would allow to solve this problem is the use

of possible plans, i.e. sequences of actions that will achieve the goal under favorable

circumstances, but may as well not succeed, depending on the missing information.

Possible plans appear to work well when they are used inside a control loop, like

173

ours, that monitors the execution of actions. In this context, they can be seen as a

“dynamic variant” of conditional plans. Differently from conditional plans, however,

possible plans seem to require fewer computational resources.

In the example above, a possible plan would be “go to door 1 and open it.” If

the plan succeeds, the agent has achieved its goal of exiting the room. Otherwise, by

observing the failure of the plan, the agent will learn that door 1 is locked. Given this

information, he will immediately determine that the goal can be achieved by using

door 2. An interesting challenge involved in the generation of possible plans is that

of guaranteeing the reachability of the goal when plans do not succeed. For example,

if trying to open a locked door were known to result in a bomb going off, any rational

agent would be expected to select a different course of action than the possible plan

above. It will be also interesting to investigate the relationship between the generation

of possible plans and the formalization of, and reasoning about, sensing actions.

174

BIBLIOGRAPHY

[1] K. Apt, A. Blair, and A. Walker. Towards a theory of declarative knowledge,

pages 89–148. Foundations of deductive databases and logic programming. Mor-

gan Kaufmann, 1988.

[2] Marcello Balduccini. USA-Smart: Improving the Quality of Plans in Answer

Set Planning. In PADL’04, Lecture Notes in Artificial Intelligence (LNCS), Jun

2004.

[3] Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog.

Journal of Theory and Practice of Logic Programming (TPLP), 3(4–5):425–461,

Jul 2003.

[4] Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-

Restoring Rules. In Patrick Doherty, John McCarthy, and Mary-Anne Williams,

editors, International Symposium on Logical Formalization of Commonsense

Reasoning, AAAI 2003 Spring Symposium Series, pages 9–18, Mar 2003.

[5] Marcello Balduccini, Michael Gelfond, and Monica Nogueira. A-Prolog as a tool

for declarative programming. In Proceedings of the 12th International Conference

on Software Engineering and Knowledge Engineering (SEKE’2000), pages 63–72,

2000.

[6] Marcello Balduccini and Veena S. Mellarkod. A-Prolog with CR-Rules and Or-

dered Disjunction. In ICISIP’04, pages 1–6, Jan 2004.

[7] Chitta Baral and Michael Gelfond. Logic Programming and Knowledge Repre-

sentation. Journal of Logic Programming, 19(20):73–148, 1994.

[8] Chitta Baral and Michael Gelfond. Reasoning Agents In Dynamic Domains. In

Workshop on Logic-Based Artificial Intelligence. Kluwer Academic Publishers,

Jun 2000.

175

[9] Chitta Baral and Michael Gelfond. Logic Programming and Reasoning about Ac-

tions, pages 389–426. Handbook of Temporal Reasoning in Artificial Intelligence.

Elsevier, 2005.

[10] Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic Reasoning

with Answer Sets. In Proceedings of LPNMR-7, Jan 2004.

[11] Chitta Baral, Sheila A. McIlraith, and Tran Cao Son. Formulating diagnos-

tic problem solving using an action language with narratives and sensing. In

Proceedings of the 2000 KR Conference, pages 311–322, 2000.

[12] R. P. Bonasso, R. J. Firby, E. Gat, David Kortenkamp, D. Miller, and M. Slack.

Experiences with an Architecture for Intelligent, Reactive Agents. Journal of

Experimental and Theoretical Artificial Intelligence, 1997.

[13] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and

David Poole. CP-nets: A Tool for Representing and Reasoning with Condi-

tional Ceteris Paribus Preference Statements. Journal of Artificial Intelligence

Research, 21:135–191, 2004.

[14] Gerhard Brewka. Logic programming with ordered disjunction. In Proceedings

of AAAI-02, 2002.

[15] Gerhard Brewka, Ilkka Niemela, and Tommi Syrjanen. Implementing Ordered

Disjunction Using Answer Set Solvers for Normal Programs. In Sergio Flesca

and Giovanbattista Ianni, editors, Proceedings of the 8th European Conference

on Artificial Intelligence (JELIA 2002), Sep 2002.

[16] Gerhard Brewka, Ilkka Niemela, and Tommi Syrjanen. Logic Programs wirh

Ordered Disjunction. 20(2):335–357, 2004.

[17] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Adding Weak Con-

straints to Disjunctive Datalog. In Proceedings of the 1997 Joint Conference on

Declarative Programming APPIA-GULP-PRODE’97, 1997.

176

[18] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong and Weak Con-

straints in Disjunctive Datalog. In Proceedings of the 4th International Confer-

ence on Logic Programming and Non-Monotonic Reasoning (LPNMR’97), vol-

ume 1265 of Lecture Notes in Artificial Intelligence (LNCS), pages 2–17, 1997.

[19] Pedro Cabalar and Ramon Otero. Pertinence and Causality. In Working Notes

of 3rd Workshop on Nonmonotonic Reasoning, Action, and Change (NRAC),

pages 111–119, 1999.

[20] Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Got-

tlob, Giovanbattista Ianni, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Si-

mona Perri, Gerard Pfeifer, and Axel Polleres. The DLV System. In Sergio Flesca

and Giovanbattista Ianni, editors, Proceedings of the 8th European Conference

on Artificial Intelligence (JELIA 2002), Sep 2002.

[21] Sandeep Chintabathina. Modeling Hybrid Domains Using Process Description

Language. Master’s thesis, Texas Tech University, Dec 2004.

[22] Sandeep Chintabathina, Michael Gelfond, and Richard Watson. Modeling Hy-

brid Domains Using Process Description Language. In Proceedings of ASP ’05

Answer Set Programming: Advances in Theory and Implementation, pages 303–

317, 2005.

[23] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerard

Pfeifer. Aggregate Functions in Disjunctive Logic Programming: Semantics,

Complexity, and Implementation in DLV. In Proceedings of the 18th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 03). Morgan Kaufmann,

Aug 2003.

[24] Grit Denker and Carolyn Talcott. Maude Specification of the MDS Architecture

and Examples. Technical Report 03 2003, SRI International, 2003.

177

[25] Yannis Dimopoulos, J. Koehler, and B. Nebel. Encoding planning problems in

nonmonotonic logic programs. In Proceedings of the 4th European Conference on

Planning, volume 1348 of Lecture Notes in Artificial Intelligence (LNCS), pages

169–181, 1997.

[26] Thomas Eiter, Esra Erdem, and Wolfgang Faber. Diagnosing Plan Execution

Discrepancies in a Logic-Based Action Framework. Technical Report INFSYS

RR-1843-04-03, Vienna University of Technology, Aug 2004.

[27] Thomas Eiter, Esra Erdem, and Wolfgang Faber. Plan Reversals for Recovery in

Execution Monitoring. In Proceedings 10th Internation Workshop on Nonmono-

tonic Reasoning (NMR 2004), Action and Causality Track, pages 147–154, Jun

2004.

[28] Thomas Eiter, Michael Fink, and Jan Senko. KMonitor - A Tool for Monitoring

Plan Execution in Action Theories. In Proceedings of LPNMR-05, pages 416–421,

2005.

[29] Selim Erdogan and Vladimir Lifschitz. Definitions in answer set programming.

In Proceedings of LPNMR-7, Jan 2004.

[30] Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and

Fariba Sadri, editors, Computational Logic: Logic Programming and Beyond,

Essays in Honour of Robert A. Kowalski, Part II, volume 2408, pages 413–451.

Springer Verlag, Berlin, 2002.

[31] Michael Gelfond and Nicola Leone. Knowledge Representation and Logic Pro-

gramming. Artificial Intelligence, 138(1–2), 2002.

[32] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic

programming. In Proceedings of ICLP-88, pages 1070–1080, 1988.

[33] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs

and disjunctive databases. New Generation Computing, pages 365–385, 1991.

178

[34] Michael Gelfond and Vladimir Lifschitz. Action Languages. Electronic Transac-

tions on AI, 3(16), 1998.

[35] Michael Gelfond and Richard Watson. Diagnostics with answer sets: Dealing

with unobservable fluents. In Proceedings of the 3rd International Workshop on

Cognitive Robotics - CogRob’02, pages 44–51, 2002.

[36] E. Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson

Turner. Nonmonotonic causal theories. Artificial Intelligence, 153:105–140, 2004.

[37] Patrick J. Hayes and John McCarthy. Some Philosophical Problems from the

Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie, editors, Ma-

chine Intelligence 4, pages 463–502. Edinburgh University Press, 1969.

[38] Katsumi Inoue. Hypothetical reasoning in logic programs. Journal of Logic

Programming, 18(3):191–227, 1994.

[39] M. Kaminski. A note on the stable model semantics of logic programs. Artificial

Intelligence, 96(2):467–479, 1997.

[40] Z. Kohavi. Switching and Finite Automata Theory. McGraw–Hill CS Series.

1978.

[41] Loveleen Kolvekal. Developing an Inference Engine for CR-Prolog with Prefer-

ences. Master’s thesis, Texas Tech University, Dec 2004.

[42] Vladimir Lifschitz. On the logic of causal explanation. Artificial Intelligence,

96:451–465, 1997.

[43] Vladimir Lifschitz. Action Languages, Answer Sets, and Planning, pages 357–

373. The Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag,

Berlin, 1999.

[44] Vladimir Lifschitz. Answer Set Planning. In Proceedings of IJCSLP 99, 1999.

179

[45] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Proceedings

of the 11th International Conference on Logic Programming (ICLP94), pages

23–38, 1994.

[46] Vladimir Lifschitz and Hudson Turner. Representing transition systems by logic

programs. In Proceedings of the 5th International Conference on Logic Pro-

gramming and Non-monotonic Reasoning (LPNMR-99), number 1730 in Lecture

Notes in Artificial Intelligence (LNCS), pages 92–106. Springer Verlag, Berlin,

1999.

[47] David Lorenzo. Learning non-monotonic logic programs to reason about actions

and change. PhD thesis, Corunna University, Nov 2001.

[48] David Lorenzo. Learning non-monotonic causal theories from narratives of ac-

tions. In Proceedings of the 9th International Workshop on Non-Monotonic Rea-

soning (NMR’2002), Apr 2002.

[49] Norman McCain. Causality in commonsense reasoning about actions. PhD thesis,

University of Texas, 1997.

[50] Norman McCain and Hudson Turner. A causal theory of ramifications and qual-

ifications. Artificial Intelligence, 32:57–95, 1995.

[51] Sheila A. McIlraith. Representing actions and state constraints in model-based

diagnosis. In Proceedings of AAAI-97, pages 43–49, 1997.

[52] Sheila A. McIlraith. Explanatory diagnosis conjecturing actions to explain ob-

servations. In Proceedings of the 1998 KR Conference, pages 167–177, 1998.

[53] Veena S. Mellarkod. Optimizing the Computation of Stable Models using Merged

Rules. Master’s thesis, Texas Tech University, May 2002.

[54] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw–Hill

Series in Electrical and Computer Engineering. 1994.

180

[55] Robin Murphy. Introduction to AI Robotics. MIT Press, 2000.

[56] Ilkka Niemela and Patrik Simons. Extending the Smodels System with Cardinal-

ity and Weight Constraints, pages 491–521. Logic-Based Artificial Intelligence.

Kluwer Academic Publishers, 2000.

[57] Monica Nogueira. Building Knowledge Systems in A-Prolog. PhD thesis, Uni-

versity of Texas at El Paso, May 2003.

[58] M. Otero and Ramon Otero. Using causality for diagnosis. In Proceedings of the

11th International Workshop on Principles of Diagnosis, pages 171–176, 2000.

[59] Ramon Otero. Induction of Stable Models. In Proceedings of 11th Int. Confer-

ence on Inductive Logic Programming, ILP-01, number 2157 in Lecture Notes in

Artificial Intelligence (LNCS), pages 193–205, 2001.

[60] Enrico Pontelli and Tran Cao Son. Reasoning about Actions and Planning

with Preferences Using Prioritized Default Theory. Computational Intelligence,

20(2):358–404, 2004.

[61] Raymond Reiter. On Closed World Data Bases, pages 119–140. Logic and Data

Bases. Plenum Press, 1978.

[62] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelli-

gence, 32:57–95, 1987.

[63] Raymond Reiter. Natural actions, concurrency and continuous time in the situ-

ation calculus. In Principles of Knowledge Representation and Reasoning: Pro-

ceedings of the Fifth International Conference (KR’96), pages 2–13, Nov 1996.

[64] Raymond Reiter. Knowledge in Action – Logical Foundations for Specifying and

Implementing Dynamical Systems. MIT Press, Sep 2001.

[65] Chiaki Sakama. Inverse Entailment in Nonmonotonic Logic Programs. In Pro-

ceedings of the 10th International Conference on Inductive Logic Programming,

181

ILP 00, number 1866 in Lecture Notes in Artificial Intelligence (LNCS), pages

209–224, 2000.

[66] Chiaki Sakama. Induction from answer sets in nonmonotonic logic programs.

ACM Transactions on Computational Logic, 6(2):203–231, Apr 2005.

[67] Chiaki Sakama and Katsumi Inoue. Prioritized Logic Programming and its Ap-

plication to Commonsense Reasoning. Artificial Intelligence, 123:185–222, 2000.

[68] M. Shanahan. Solving the frame problem: A mathematical investigation of the

commonsense law of inertia. MIT Press, 1997.

[69] Patrik Simons. Extending the Stable Model Semantics with More Expressive

Rules. In Proceedings of the 5th International Conference on Logic Programming

and Non-monotonic Reasoning (LPNMR-99), number 1730 in Lecture Notes in

Artificial Intelligence (LNCS). Springer Verlag, Berlin, 1999.

[70] Mikhail Soutchanski. High-level Robot Programming and Program Execution.

In Proceedings of the ICAPS-03 Workshop on Plan Execution, Jun 2003.

[71] Mikhail Soutchanski. High-Level Robot Programming in Dynamic and Incom-

pletely Known Environments. PhD thesis, University of Toronto, 2003.

[72] Luis Ng Tari. Learning AnsProlog Rules. Master’s thesis, Arizona State Univer-

sity, Jun 2004.

[73] Michael Thielscher. A theory of dynamic diagnosis. Linkoping Electronic Articles

in Computer and Information Science, 2(11), 1997.

[74] Michael Thielscher. Ramification and causality. Artificial Intelligence, 89:317–

364, 1997.

[75] Michael Thielscher. Introduction to Fluent Calculus. Linkoping Electronic Arti-

cles in Computer and Information Science, 3(14), 1998.

182

[76] Hudson Turner. Splitting a Default Theory. In Proceedings of AAAI-96, pages

645–651, 1996.

[77] Hudson Turner. Reprenting Actions in Logic Programs and Default Theories: A

Situation Calculus Approach. Journal of Logic Programming, 31(1-3):245–298,

Jun 1997.

[78] Hudson Turner. Polynomial-Length Planning Spans the Polynomial Hierarchy.

In Sergio Flesca and Giovanbattista Ianni, editors, Proceedings of the 8th Eu-

ropean Conference on Artificial Intelligence (JELIA 2002), pages 111–124, Sep

2002.

183

